Cargando…
Cellular cholesterol is required for porcine nidovirus infection
Porcine reproductive and respiratory syndrome virus (PRRSV) and porcine epidemic diarrhea virus (PEDV) are porcine nidoviruses that are considered emerging and re-emerging viral pathogens of pigs that pose a significant economic threat to the global pork industry. Although cholesterol is known to af...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7086867/ https://www.ncbi.nlm.nih.gov/pubmed/28884395 http://dx.doi.org/10.1007/s00705-017-3545-4 |
Sumario: | Porcine reproductive and respiratory syndrome virus (PRRSV) and porcine epidemic diarrhea virus (PEDV) are porcine nidoviruses that are considered emerging and re-emerging viral pathogens of pigs that pose a significant economic threat to the global pork industry. Although cholesterol is known to affect the replication of a broad range of viruses in vitro, its significance and role in porcine nidovirus infection remains to be elucidated. Therefore, the present study was conducted to determine whether cellular or/and viral cholesterol levels play a role in porcine nidovirus infection. Our results showed that depletion of cellular cholesterol by treating cells with methyl-β-cyclodextrin (MβCD) dose-dependently suppressed the replication of both nidoviruses. Conversely, cholesterol depletion from the viral envelope had no inhibitory effect on porcine nidovirus production. The addition of exogenous cholesterol to MβCD-treated cells moderately restored the infectivity of porcine nidoviruses, indicating that the presence of cholesterol in the target cell membrane is critical for viral replication. The antiviral activity of MβCD on porcine nidovirus infection was found to be predominantly exerted when used as a treatment pre-infection or prior to the viral entry process. Furthermore, pharmacological sequestration of cellular cholesterol efficiently blocked both virus attachment and internalization and, accordingly, markedly affected subsequent post-entry steps of the replication cycle, including viral RNA and protein biosynthesis and progeny virus production. Taken together, our data indicate that cell membrane cholesterol is required for porcine nidovirus entry into cells, and pharmacological drugs that hamper cholesterol-dependent virus entry may have antiviral potential against porcine nidoviruses. |
---|