Cargando…
A metagenomics study for the identification of respiratory viruses in mixed clinical specimens: an application of the iterative mapping approach
Metagenomic approaches to detect viral genomes and variants in clinical samples have various challenges, including low viral titers and bacterial and human genome contamination. To address these limitations, we examined a next-generation sequencing (NGS) and iterative mapping approach for virus dete...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7087367/ https://www.ncbi.nlm.nih.gov/pubmed/28424887 http://dx.doi.org/10.1007/s00705-017-3367-4 |
_version_ | 1783509324345114624 |
---|---|
author | Gong, Yu-Nong Yang, Shu-Li Chen, Guang-Wu Chen, Yu-Wen Huang, Yhu-Chering Ning, Hsiao-Chen Tsao, Kuo-Chien |
author_facet | Gong, Yu-Nong Yang, Shu-Li Chen, Guang-Wu Chen, Yu-Wen Huang, Yhu-Chering Ning, Hsiao-Chen Tsao, Kuo-Chien |
author_sort | Gong, Yu-Nong |
collection | PubMed |
description | Metagenomic approaches to detect viral genomes and variants in clinical samples have various challenges, including low viral titers and bacterial and human genome contamination. To address these limitations, we examined a next-generation sequencing (NGS) and iterative mapping approach for virus detection in clinical samples. We analyzed 40 clinical specimens from hospitalized children diagnosed with acute bronchiolitis, croup, or respiratory tract infections in which virus identification by viral culture or polymerase chain reaction (PCR) was unsuccessful. For our NGS data analysis pipeline, clinical samples were pooled into two NGS groups to reduce sequencing costs, and the depth and coverage of assembled contigs were effectively increased using an iterative mapping approach. PCR was individually performed for each specimen according to the NGS-predicted viral type. We successfully detected previously unidentified respiratory viruses in 26 of 40 specimens using our proposed NGS pipeline. Two dominant populations within the detected viruses were human rhinoviruses (HRVs; n = 14) and human coronavirus NL63 (n = 8), followed by human parainfluenza virus (HPIV), human parechovirus, influenza A virus, respiratory syncytial virus (RSV), and human metapneumovirus. This is the first study reporting the complete genome sequences of HRV-A101, HRV-C3, HPIV-4a, and RSV, as well as an analysis of their genetic variants, in Taiwan. These results demonstrate that this NGS pipeline allows to detect viruses which were not identified by routine diagnostic assays, directly from clinical samples. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00705-017-3367-4) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-7087367 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Springer Vienna |
record_format | MEDLINE/PubMed |
spelling | pubmed-70873672020-03-23 A metagenomics study for the identification of respiratory viruses in mixed clinical specimens: an application of the iterative mapping approach Gong, Yu-Nong Yang, Shu-Li Chen, Guang-Wu Chen, Yu-Wen Huang, Yhu-Chering Ning, Hsiao-Chen Tsao, Kuo-Chien Arch Virol Original Article Metagenomic approaches to detect viral genomes and variants in clinical samples have various challenges, including low viral titers and bacterial and human genome contamination. To address these limitations, we examined a next-generation sequencing (NGS) and iterative mapping approach for virus detection in clinical samples. We analyzed 40 clinical specimens from hospitalized children diagnosed with acute bronchiolitis, croup, or respiratory tract infections in which virus identification by viral culture or polymerase chain reaction (PCR) was unsuccessful. For our NGS data analysis pipeline, clinical samples were pooled into two NGS groups to reduce sequencing costs, and the depth and coverage of assembled contigs were effectively increased using an iterative mapping approach. PCR was individually performed for each specimen according to the NGS-predicted viral type. We successfully detected previously unidentified respiratory viruses in 26 of 40 specimens using our proposed NGS pipeline. Two dominant populations within the detected viruses were human rhinoviruses (HRVs; n = 14) and human coronavirus NL63 (n = 8), followed by human parainfluenza virus (HPIV), human parechovirus, influenza A virus, respiratory syncytial virus (RSV), and human metapneumovirus. This is the first study reporting the complete genome sequences of HRV-A101, HRV-C3, HPIV-4a, and RSV, as well as an analysis of their genetic variants, in Taiwan. These results demonstrate that this NGS pipeline allows to detect viruses which were not identified by routine diagnostic assays, directly from clinical samples. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00705-017-3367-4) contains supplementary material, which is available to authorized users. Springer Vienna 2017-04-19 2017 /pmc/articles/PMC7087367/ /pubmed/28424887 http://dx.doi.org/10.1007/s00705-017-3367-4 Text en © Springer-Verlag Wien 2017 This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
spellingShingle | Original Article Gong, Yu-Nong Yang, Shu-Li Chen, Guang-Wu Chen, Yu-Wen Huang, Yhu-Chering Ning, Hsiao-Chen Tsao, Kuo-Chien A metagenomics study for the identification of respiratory viruses in mixed clinical specimens: an application of the iterative mapping approach |
title | A metagenomics study for the identification of respiratory viruses in mixed clinical specimens: an application of the iterative mapping approach |
title_full | A metagenomics study for the identification of respiratory viruses in mixed clinical specimens: an application of the iterative mapping approach |
title_fullStr | A metagenomics study for the identification of respiratory viruses in mixed clinical specimens: an application of the iterative mapping approach |
title_full_unstemmed | A metagenomics study for the identification of respiratory viruses in mixed clinical specimens: an application of the iterative mapping approach |
title_short | A metagenomics study for the identification of respiratory viruses in mixed clinical specimens: an application of the iterative mapping approach |
title_sort | metagenomics study for the identification of respiratory viruses in mixed clinical specimens: an application of the iterative mapping approach |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7087367/ https://www.ncbi.nlm.nih.gov/pubmed/28424887 http://dx.doi.org/10.1007/s00705-017-3367-4 |
work_keys_str_mv | AT gongyunong ametagenomicsstudyfortheidentificationofrespiratoryvirusesinmixedclinicalspecimensanapplicationoftheiterativemappingapproach AT yangshuli ametagenomicsstudyfortheidentificationofrespiratoryvirusesinmixedclinicalspecimensanapplicationoftheiterativemappingapproach AT chenguangwu ametagenomicsstudyfortheidentificationofrespiratoryvirusesinmixedclinicalspecimensanapplicationoftheiterativemappingapproach AT chenyuwen ametagenomicsstudyfortheidentificationofrespiratoryvirusesinmixedclinicalspecimensanapplicationoftheiterativemappingapproach AT huangyhuchering ametagenomicsstudyfortheidentificationofrespiratoryvirusesinmixedclinicalspecimensanapplicationoftheiterativemappingapproach AT ninghsiaochen ametagenomicsstudyfortheidentificationofrespiratoryvirusesinmixedclinicalspecimensanapplicationoftheiterativemappingapproach AT tsaokuochien ametagenomicsstudyfortheidentificationofrespiratoryvirusesinmixedclinicalspecimensanapplicationoftheiterativemappingapproach AT gongyunong metagenomicsstudyfortheidentificationofrespiratoryvirusesinmixedclinicalspecimensanapplicationoftheiterativemappingapproach AT yangshuli metagenomicsstudyfortheidentificationofrespiratoryvirusesinmixedclinicalspecimensanapplicationoftheiterativemappingapproach AT chenguangwu metagenomicsstudyfortheidentificationofrespiratoryvirusesinmixedclinicalspecimensanapplicationoftheiterativemappingapproach AT chenyuwen metagenomicsstudyfortheidentificationofrespiratoryvirusesinmixedclinicalspecimensanapplicationoftheiterativemappingapproach AT huangyhuchering metagenomicsstudyfortheidentificationofrespiratoryvirusesinmixedclinicalspecimensanapplicationoftheiterativemappingapproach AT ninghsiaochen metagenomicsstudyfortheidentificationofrespiratoryvirusesinmixedclinicalspecimensanapplicationoftheiterativemappingapproach AT tsaokuochien metagenomicsstudyfortheidentificationofrespiratoryvirusesinmixedclinicalspecimensanapplicationoftheiterativemappingapproach |