Cargando…
Managing Wildlife Faced with Pathogen Risks Involving Multi-Stable Outcomes
Most models designed to understand how to manage infected wildlife systems with bioeconomic multi-stability take the initial conditions as given, thereby treating pathogen invasion as unanticipated. We examine how ex ante management is an opportunity to influence the ex post conditions, which in tur...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7087664/ https://www.ncbi.nlm.nih.gov/pubmed/32214673 http://dx.doi.org/10.1007/s10640-018-0227-y |
Sumario: | Most models designed to understand how to manage infected wildlife systems with bioeconomic multi-stability take the initial conditions as given, thereby treating pathogen invasion as unanticipated. We examine how ex ante management is an opportunity to influence the ex post conditions, which in turn affect the ex post optimal outcome. To capture these ex ante management choices, we extend the Poisson “collapse” model of Reed and Heras (Bull Math Biol 54:185–207, 1992) to allow for endogenous initial conditions and ex post multi-stability. We account for two uncertain processes: the introduction and establishment of the pathogen. Introduction is conditional on anthropogenic investments in prevention, and both random processes are conditional on how we manage the native population to provide natural prevention of invasion and natural insurance against establishment placing the system in an undesirable basin of attraction. We find that both multi-stability of the invaded system and these uncertainty processes can create economic non-convexities that yield multiple candidate solutions to the ex ante optimization problem. Additionally, we illustrate how the nature of natural protection against introduction and establishment risks can play an important role in the allocation of anthropogenic investments. |
---|