Cargando…

Selected TLR7/8 agonist and type I interferon (IFN-α) cooperatively redefine the microglia transcriptome

BACKGROUND: Microglia, the primary immune cells of the central nervous system, exerts multiple functions to mediate many neurological diseases. Upon any detection of invading pathogen products (e.g., TLR agonists) or host-released signaling factors (e.g., interferon/IFN), these cells undergo an acti...

Descripción completa

Detalles Bibliográficos
Autores principales: Khatun, Mst Reshma, Arifuzzaman, Sarder
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7087773/
https://www.ncbi.nlm.nih.gov/pubmed/31190206
http://dx.doi.org/10.1007/s10787-019-00610-8
Descripción
Sumario:BACKGROUND: Microglia, the primary immune cells of the central nervous system, exerts multiple functions to mediate many neurological diseases. Upon any detection of invading pathogen products (e.g., TLR agonists) or host-released signaling factors (e.g., interferon/IFN), these cells undergo an activation process to release large numbers of inflammatory substances that participate in inflammation and homeostasis. The profound effects of inflammation associated with TLR7/8 agonist Resiquimod (R848) and type 1 interferon (e.g., IFN-α)-induced macrophage and dendritic cell activation on biological outcomes have long been recognized. However, the underlying mechanisms are not well defined in microglial cells. METHODS: The present study investigated the molecular signatures of microglia and identified genes that are uniquely or synergistically expressed in R848-, IFN-α- or R848 with IFN-α-treated primary microglial (PM) cells. We used RNA-sequencing, quantitative real-time PCR, and bioinformatics approaches to derive regulatory networks that control the transcriptional response of PM to R848, IFN-α and R848 with IFN-α. RESULTS: Our approach revealed that the inflammatory response in R848 with IFN-α-treated PM is faster and more intense than that in R848 or IFN-α-treated PM in terms of the number of differentially expressed genes and the magnitude of induction/repression. In particular, our integrative analysis enabled us to suggest the regulatory functions of TFs, which allowed the construction of a network model that explains how TLR7/8 and IFN-α-sensing pathways achieve specificity. CONCLUSION: In conclusion, the systematic approach presented herein could be important to the understanding microglial activation-mediated molecular signatures induced by inflammatory stimuli related to TLR7/8, IFN-α or co-signaling, and associated transcriptional machinery of microglial functions and neuroinflammatory mechanisms. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s10787-019-00610-8) contains supplementary material, which is available to authorized users.