Cargando…

From single-molecule detection to next-generation sequencing: microfluidic droplets for high-throughput nucleic acid analysis

Droplet-based microfluidic technologies have proved themselves to be of significant utility in the performance of high-throughput chemical and biological experiments. By encapsulating and isolating reagents within femtoliter–nanoliter droplet, millions of (bio) chemical reactions can be processed in...

Descripción completa

Detalles Bibliográficos
Autores principales: Ding, Yun, Choo, Jaebum, deMello, Andrew J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7087872/
https://www.ncbi.nlm.nih.gov/pubmed/32214953
http://dx.doi.org/10.1007/s10404-017-1889-4
Descripción
Sumario:Droplet-based microfluidic technologies have proved themselves to be of significant utility in the performance of high-throughput chemical and biological experiments. By encapsulating and isolating reagents within femtoliter–nanoliter droplet, millions of (bio) chemical reactions can be processed in a parallel fashion and on ultra-short timescales. Recent applications of such technologies to genetic analysis have suggested significant utility in low-cost, efficient and rapid workflows for DNA amplification, rare mutation detection, antibody screening and next-generation sequencing. To this end, we describe and highlight some of the most interesting recent developments and applications of droplet-based microfluidics in the broad area of nucleic acid analysis. In addition, we also present a cursory description of some of the most essential functional components, which allow the creation of integrated and complex workflows based on flowing streams of droplets.