Cargando…

Identification of encoding proteins related to SARS-CoV

By sampling 100 encoding proteins from SARS-coronavirus (SARS-CoV, NC 004718) and other six coronaviruses and selecting 23 variables through stepwise multiple regression (SMR) from 172 variables, the multiple linear regression (MLR) model was established with good results of the quantitative modelli...

Descripción completa

Detalles Bibliográficos
Autores principales: Mei, Hu, Sun, Lili, Zhou, Yuan, Xiong, Qing, Li, Zhiliang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Science in China Press 2004
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7089014/
https://www.ncbi.nlm.nih.gov/pubmed/32214714
http://dx.doi.org/10.1360/03wb0198
Descripción
Sumario:By sampling 100 encoding proteins from SARS-coronavirus (SARS-CoV, NC 004718) and other six coronaviruses and selecting 23 variables through stepwise multiple regression (SMR) from 172 variables, the multiple linear regression (MLR) model was established with good results of the quantitative modelling correlation coefficient R (2) = 0.645 and the cross-validation correlation coefficient R (CV)(2) = 0.375. After removing 4 outliers, the quantitative modelling and cross-validation correlation coefficients were R (2)= 0.743 and R (CV)(2) = 0.543, respectively.