Cargando…

No-boarding buses: Synchronisation for efficiency

We investigate a no-boarding policy in a system of N buses serving M bus stops in a loop, which is an entrainment mechanism to keep buses synchronised in a reasonably staggered configuration. Buses always allow alighting, but would disallow boarding if certain criteria are met. For an analytically t...

Descripción completa

Detalles Bibliográficos
Autores principales: Saw, Vee-Liem, Chew, Lock Yue
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7089533/
https://www.ncbi.nlm.nih.gov/pubmed/32203548
http://dx.doi.org/10.1371/journal.pone.0230377
Descripción
Sumario:We investigate a no-boarding policy in a system of N buses serving M bus stops in a loop, which is an entrainment mechanism to keep buses synchronised in a reasonably staggered configuration. Buses always allow alighting, but would disallow boarding if certain criteria are met. For an analytically tractable theory, buses move with the same natural speed (applicable to programmable self-driving buses), where the average waiting time experienced by passengers waiting at the bus stop for a bus to arrive can be calculated. The analytical results show that a no-boarding policy can dramatically reduce the average waiting time, as compared to the usual situation without the no-boarding policy. Subsequently, we carry out simulations to verify these theoretical analyses, also extending the simulations to typical human-driven buses with different natural speeds based on real data. Finally, a simple general adaptive algorithm is implemented to dynamically determine when to implement no-boarding in a simulation for a real university shuttle bus service.