Cargando…

Structure determination of UL49.5 transmembrane protein from bovine herpesvirus 1 by NMR spectroscopy and molecular dynamics

The transporter associated with antigen processing (TAP) directly participates in the immune response as a key component of the cytosolic peptide to major histocompatibility complex (MHC) class I protein loading machinery. This makes TAP an important target for viruses avoiding recognition by CD8+ T...

Descripción completa

Detalles Bibliográficos
Autores principales: Karska, Natalia, Graul, Małgorzata, Sikorska, Emilia, Zhukov, Igor, Ślusarz, Magdalena J., Kasprzykowski, Franciszek, Lipińska, Andrea D., Rodziewicz-Motowidło, Sylwia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7089609/
https://www.ncbi.nlm.nih.gov/pubmed/30772281
http://dx.doi.org/10.1016/j.bbamem.2019.02.005
Descripción
Sumario:The transporter associated with antigen processing (TAP) directly participates in the immune response as a key component of the cytosolic peptide to major histocompatibility complex (MHC) class I protein loading machinery. This makes TAP an important target for viruses avoiding recognition by CD8+ T lymphocytes. Its activity can be suppressed by the UL49.5 protein produced by bovine herpesvirus 1, although the mechanism of this inhibition has not been understood so far. Therefore, the main goal of our study was to investigate the 3D structure of bovine herpesvirus 1 - encoded UL49.5 protein. The final structure of the inhibitor was established using circular dichroism (CD), 2D nuclear magnetic resonance (NMR), and molecular dynamics (MD) in membrane mimetic environments. In NMR studies, UL49.5 was represented by two fragments: the extracellular region (residues 1–35) and the transmembrane-intracellular fragment (residues 36–75), displaying various functions during viral invasion. After the empirical structure determination, a molecular docking procedure was used to predict the complex of UL49.5 with the TAP heterodimer. Our results revealed that UL49.5 adopted a highly flexible membrane-proximal helical structure in the extracellular part. In the transmembrane region, we observed two short α-helices. Furthermore, the cytoplasmic part had an unordered structure. Finally, we propose three different orientations of UL49.5 in the complex with TAP. Our studies provide, for the first time, the experimental structural information on UL49.5 and structure-based insight in its mechanism of action which might be helpful in designing new drugs against viral infections.