Cargando…

Delayed two steps PRP injection strategy for the improvement of fat graft survival with superior angiogenesis

Platelet-rich plasma (PRP) has been widely used to improve the fat retention rate in autologous fat transplantation since it possesses a good angiogenesis capability in vivo. However, due to the short half-life of growth factors released from PRP and its uneven distribution in injected fat tissue, t...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yuan, Mou, Shan, Xiao, Peng, Li, Guining, Li, Jialun, Tong, Jing, Wang, Jiecong, Yang, Jie, Sun, Jiaming, Wang, Zhenxing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7089949/
https://www.ncbi.nlm.nih.gov/pubmed/32251339
http://dx.doi.org/10.1038/s41598-020-61891-6
Descripción
Sumario:Platelet-rich plasma (PRP) has been widely used to improve the fat retention rate in autologous fat transplantation since it possesses a good angiogenesis capability in vivo. However, due to the short half-life of growth factors released from PRP and its uneven distribution in injected fat tissue, the strategy of PRP in fat transplantation needs further improvement. Since the capillaries started to grow into fat grafts in 1 week and vascular growth peaks in the second week after transplantation, we hypothesized that delayed two-steps PRP injection into the interior of grafts, accompanied with the extent of neovascularization might theoretically promote microvessel growth inside transplanted adipose tissue. 24 nude mice were divided into three groups: Blank group (0.35 mL fat mixed with 0.15 mL saline, N = 8), Single step group (0.35 mL fat mixed with 0.15 mLPRP, N = 8), and Two steps group (0.35 mL fat (day 0) + 0.075 mL PRP (day 7) + 0.075 mL PRP (day 14), N = 8). At 6 and 14 weeks post-transplantation, grafts were dissected, weighted, and assessed for histology, angiogenesis, fat regeneration and inflammation level. The weight and volume of the fat samples revealed no statistical difference among the three groups at 6 weeks after fat transplantation. The weight and volume of the Two steps group fat samples showed significantly higher compared to that in Blank and Single step groups at 14 weeks after fat transplantation (weight: 137.25 ± 5.60 mg versus 87.5 ± 3.90 mg,106.75 ± 2.94 mg, respectively; volume: 0.13 ± 0.01 mL versus 0.08 ± 0.01 mL, 0.09 ± 0.01 mL, respectively). Histological assessments indicated that delayed two-steps PRP injection strategy helps to improve adipose tissue content and reduce the composition of fibrous connective tissue at 14 weeks after fat transplantation. At 6 weeks and 14 weeks after transplantation, CD31 immunofluorescence indicated that delayed two-steps PRP injection strategy helps to improve angiogenesis and significantly higher compared to that in Blank and Single step groups (6 weeks: 28.75 ± 4.54 versus 10.50 ± 2.06, 21.75 ± 1.85; 14 weeks: 21.75 ± 2.86 versus 9.87 ± 2.08, 11.75 ± 1.47, respectively). Preadipocyte count indicated delayed two-steps PRP injection strategy might promote fat regeneration and significantly higher compared to that in Blank and Single step groups at 14 weeks (129.75 ± 6.57 versus 13.50 ± 3.50, 17.12 ± 6.23, respectively). In this study, we demonstrated that the novel delayed two-steps PRP injection strategy remarkably enhanced the long-term fat retention rate and improved the neovascularization extent in the interior of the fat graft. Platelet-rich plasma, Delayed two-steps injection, Angiogenesis, Fat transplantation