Cargando…
Infrared spectroscopy data- and physics-driven machine learning for characterizing surface microstructure of complex materials
There is a need to characterize complex materials and their dynamics under reaction conditions to accelerate materials design. Adsorbate vibrational excitations are selective to adsorbate/surface interactions and infrared (IR) spectra associated with activating adsorbate vibrational modes are accura...
Autores principales: | Lansford, Joshua L., Vlachos, Dionisios G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7089992/ https://www.ncbi.nlm.nih.gov/pubmed/32251293 http://dx.doi.org/10.1038/s41467-020-15340-7 |
Ejemplares similares
-
Scaling relationships and theory for vibrational frequencies of adsorbates on transition metal surfaces
por: Lansford, Joshua L., et al.
Publicado: (2017) -
Predicting material microstructure evolution via data-driven machine learning
por: Kautz, Elizabeth J.
Publicado: (2021) -
Explainable and trustworthy artificial intelligence for correctable modeling in chemical sciences
por: Feng, Jinchao, et al.
Publicado: (2020) -
Machine‐Learning Microstructure for Inverse Material Design
por: Pei, Zongrui, et al.
Publicado: (2021) -
A Review of Machine Learning for Near-Infrared Spectroscopy
por: Zhang, Wenwen, et al.
Publicado: (2022)