Cargando…
Technical and imaging factors influencing performance of deep learning systems for diabetic retinopathy
Deep learning (DL) has been shown to be effective in developing diabetic retinopathy (DR) algorithms, possibly tackling financial and manpower challenges hindering implementation of DR screening. However, our systematic review of the literature reveals few studies studied the impact of different fac...
Autores principales: | Yip, Michelle Y. T., Lim, Gilbert, Lim, Zhan Wei, Nguyen, Quang D., Chong, Crystal C. Y., Yu, Marco, Bellemo, Valentina, Xie, Yuchen, Lee, Xin Qi, Hamzah, Haslina, Ho, Jinyi, Tan, Tien-En, Sabanayagam, Charumathi, Grzybowski, Andrzej, Tan, Gavin S. W., Hsu, Wynne, Lee, Mong Li, Wong, Tien Yin, Ting, Daniel S. W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7090044/ https://www.ncbi.nlm.nih.gov/pubmed/32219181 http://dx.doi.org/10.1038/s41746-020-0247-1 |
Ejemplares similares
-
Different fundus imaging modalities and technical factors in AI screening for diabetic retinopathy: a review
por: Lim, Gilbert, et al.
Publicado: (2020) -
The War on Diabetic Retinopathy: Where Are We Now?
por: Wong, Tien Y., et al.
Publicado: (2019) -
Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss
por: Lee, Ryan, et al.
Publicado: (2015) -
Deep learning in estimating prevalence and systemic risk factors for diabetic retinopathy: a multi-ethnic study
por: Ting, Daniel S. W., et al.
Publicado: (2019) -
Deep learning algorithms to detect diabetic kidney disease from retinal photographs in multiethnic populations with diabetes
por: Betzler, Bjorn Kaijun, et al.
Publicado: (2023)