Cargando…
Presenting machine learning model information to clinical end users with model facts labels
There is tremendous enthusiasm surrounding the potential for machine learning to improve medical prognosis and diagnosis. However, there are risks to translating a machine learning model into clinical care and clinical end users are often unaware of the potential harm to patients. This perspective p...
Autores principales: | Sendak, Mark P., Gao, Michael, Brajer, Nathan, Balu, Suresh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7090057/ https://www.ncbi.nlm.nih.gov/pubmed/32219182 http://dx.doi.org/10.1038/s41746-020-0253-3 |
Ejemplares similares
-
Integrating a Machine Learning System Into Clinical Workflows: Qualitative Study
por: Sandhu, Sahil, et al.
Publicado: (2020) -
Machine learning for early detection of sepsis: an internal and temporal validation study
por: Bedoya, Armando D, et al.
Publicado: (2020) -
Machine Learning in Health Care: A Critical Appraisal of Challenges and Opportunities
por: Sendak, Mark, et al.
Publicado: (2019) -
Facts and figures
por: Petsko, Gregory A
Publicado: (2006) -
Offline: Facts are not enough
por: Horton, Richard
Publicado: (2020)