Cargando…
A Role for H/ACA and C/D Small Nucleolar RNAs in Viral Replication
We have employed gene-trap insertional mutagenesis to identify candidate genes whose disruption confer phenotypic resistance to lytic infection, in independent studies using 12 distinct viruses and several different cell lines. Analysis of >2,000 virus-resistant clones revealed >1,000 candidat...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7090452/ https://www.ncbi.nlm.nih.gov/pubmed/24477674 http://dx.doi.org/10.1007/s12033-013-9730-0 |
Sumario: | We have employed gene-trap insertional mutagenesis to identify candidate genes whose disruption confer phenotypic resistance to lytic infection, in independent studies using 12 distinct viruses and several different cell lines. Analysis of >2,000 virus-resistant clones revealed >1,000 candidate host genes, approximately 20 % of which were disrupted in clones surviving separate infections with 2–6 viruses. Interestingly, there were 83 instances in which the insertional mutagenesis vector disrupted transcripts encoding H/ACA-class and C/D-class small nucleolar RNAs (SNORAs and SNORDs, respectively). Of these, 79 SNORAs and SNORDs reside within introns of 29 genes (predominantly protein-coding), while 4 appear to be independent transcription units. siRNA studies targeting candidate SNORA/Ds provided independent confirmation of their roles in infection when tested against cowpox virus, Dengue Fever virus, influenza A virus, human rhinovirus 16, herpes simplex virus 2, or respiratory syncytial virus. Significantly, eight of the nine SNORA/Ds targeted with siRNAs enhanced cellular resistance to multiple viruses suggesting widespread involvement of SNORA/Ds in virus–host interactions and/or virus-induced cell death. |
---|