Cargando…

Background K(2P) Channels KCNK3/9/15 Limit the Budding of Cell Membrane-derived Vesicles

The main function of background two-pore potassium (K(2P)) channels KCNK3/9/15 is to stabilize the cell membrane potential. We previously observed that membrane potential depolarization enhances the release of HIV-1 viruses. Because membrane polarization affects the biomembrane directly, here we exa...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Daniel Tsung-Ning, Chi, Naiwen, Chen, Shiou-Ching, Lee, Ting-Ying, Hsu, Kate
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Humana Press Inc 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7090673/
https://www.ncbi.nlm.nih.gov/pubmed/21761257
http://dx.doi.org/10.1007/s12013-011-9241-1
Descripción
Sumario:The main function of background two-pore potassium (K(2P)) channels KCNK3/9/15 is to stabilize the cell membrane potential. We previously observed that membrane potential depolarization enhances the release of HIV-1 viruses. Because membrane polarization affects the biomembrane directly, here we examined the effects of KCNK3/9/15 on the budding of nonviral vesicles. We found that depolarization by knocking down endogenous KCNK3/9/15 promoted secretion of cell-derived vesicles. We further used Vpu (an antagonist of KCNK3) as a model for the in vivo study of depolarization-stimulated secretion. Vpu is a HIV-1-encoded, ion channel-like protein (viroporin) capable of enhancing virus release and depolarizing the cell membrane potential. We found that Vpu could also promote nonviral vesicle release, perhaps through a similar mechanism that Vpu utilizes to promote viral particle release. Notably, T cells expressing Vpu alone became pathologically low in intracellular K(+) and insensitive to extracellular K(+) or membrane potential stimulation. In contrast, heterologous expression of KCNK3 in T cells stabilized the cell potentials by maintaining intracellular K(+). We thus concluded that KCNK3/9/15 expression limits membrane depolarization and depolarization-induced secretion at least in part by maintaining intracellular K(+).