Cargando…
Double-Criteria Active Learning for Multiclass Brain-Computer Interfaces
Recent technological advances have enabled researchers to collect large amounts of electroencephalography (EEG) signals in labeled and unlabeled datasets. It is expensive and time consuming to collect labeled EEG data for use in brain-computer interface (BCI) systems, however. In this paper, a novel...
Autores principales: | She, Qingshan, Chen, Kang, Luo, Zhizeng, Nguyen, Thinh, Potter, Thomas, Zhang, Yingchun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7091553/ https://www.ncbi.nlm.nih.gov/pubmed/32256550 http://dx.doi.org/10.1155/2020/3287589 |
Ejemplares similares
-
Multiclass Posterior Probability Twin SVM for Motor Imagery EEG Classification
por: She, Qingshan, et al.
Publicado: (2015) -
Classification of Motor Imagery EEG Signals with Support Vector Machines and Particle Swarm Optimization
por: Ma, Yuliang, et al.
Publicado: (2016) -
Scale-Dependent Signal Identification in Low-Dimensional Subspace: Motor Imagery Task Classification
por: She, Qingshan, et al.
Publicado: (2016) -
Multiclass Informative Instance Transfer Learning Framework for Motor Imagery-Based Brain-Computer Interface
por: Hossain, Ibrahim, et al.
Publicado: (2018) -
Sparse Representation-Based Extreme Learning Machine for Motor Imagery EEG Classification
por: She, Qingshan, et al.
Publicado: (2018)