Cargando…
Hellinger distance-based stable sparse feature selection for high-dimensional class-imbalanced data
BACKGROUND: Feature selection in class-imbalance learning has gained increasing attention in recent years due to the massive growth of high-dimensional class-imbalanced data across many scientific fields. In addition to reducing model complexity and discovering key biomarkers, feature selection is a...
Autores principales: | Fu, Guang-Hui, Wu, Yuan-Jiao, Zong, Min-Jie, Pan, Jianxin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7092448/ https://www.ncbi.nlm.nih.gov/pubmed/32293252 http://dx.doi.org/10.1186/s12859-020-3411-3 |
Ejemplares similares
-
The Use of Hellinger Distance Undersampling Model to Improve the Classification of Disease Class in Imbalanced Medical Datasets
por: Al-Shamaa, Zina Z. R., et al.
Publicado: (2020) -
Retracted: The Use of Hellinger Distance Undersampling Model to Improve the Classification of Disease Class in Imbalanced Medical Datasets
por: and Biomechanics, Applied Bionics
Publicado: (2023) -
Hellinger Information Matrix and Hellinger Priors
por: Shemyakin, Arkady
Publicado: (2023) -
Feature Ranking and Screening for Class-Imbalanced Metabolomics Data Based on Rank Aggregation Coupled with Re-Balance
por: Fu, Guang-Hui, et al.
Publicado: (2021) -
Robust Inference after Random Projections via Hellinger Distance for Location-Scale Family
por: Li, Lei, et al.
Publicado: (2019)