Cargando…
Development of microsatellite markers for three at risk tiger beetles Cicindela dorsalis dorsalis, C. d. media, and C. puritana
OBJECTIVE: Tiger beetles inhabiting sandy beaches and cliffs along the east coast of the United States are facing increasing habitat loss due to erosion, urbanization, and sea level rise. The northeastern beach tiger beetle Cicindela dorsalis dorsalis and Puritan tiger beetle Cicindela puritana are...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7092472/ https://www.ncbi.nlm.nih.gov/pubmed/32293541 http://dx.doi.org/10.1186/s13104-020-04985-8 |
Sumario: | OBJECTIVE: Tiger beetles inhabiting sandy beaches and cliffs along the east coast of the United States are facing increasing habitat loss due to erosion, urbanization, and sea level rise. The northeastern beach tiger beetle Cicindela dorsalis dorsalis and Puritan tiger beetle Cicindela puritana are both listed as threatened under the Endangered Species Act of 1973, while the white beach tiger beetle Cicindela dorsalis media is not listed but has been declining. Extirpation of these beetles, in some cases from entire states, has isolated many populations reducing gene flow and elevating the risk for the loss of genetic variation. To facilitate investigations of population genetic structure, we developed suites of microsatellite loci for conservation genetic studies. RESULTS: Shotgun genomic sequencing of all species identified thousands of candidate microsatellite loci, among which 17 loci were optimized and verified to cross-amplify within C. d. media and C. d. dorsalis, and eight separate loci were optimized for C. puritana. Most loci conformed to Hardy–Weinberg equilibrium, showed no evidence of linkage disequilibrium or null alleles, and revealed population genetic characteristics informative for natural resource managers among the populations tested. |
---|