Cargando…
Isolation of inhibitory RNA aptamers against severe acute respiratory syndrome (SARS) coronavirus NTPase/Helicase
Recent outbreak of Severe Acute Respiratory Syndrome (SARS) that caused almost 800 victims requires a development of efficient inhibitor against SARS coronavirus (SCV). In this study, RNA aptamers against SCV NTPase/Helicase (nsP10) were isolated from RNA library containing random sequences of 40 nt...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Inc.
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7092905/ https://www.ncbi.nlm.nih.gov/pubmed/18082623 http://dx.doi.org/10.1016/j.bbrc.2007.12.020 |
Sumario: | Recent outbreak of Severe Acute Respiratory Syndrome (SARS) that caused almost 800 victims requires a development of efficient inhibitor against SARS coronavirus (SCV). In this study, RNA aptamers against SCV NTPase/Helicase (nsP10) were isolated from RNA library containing random sequences of 40 nts using in vitro selection technique. Nucleotide sequences of enriched RNA aptamer pool (ES15 RNA) contain AG-rich conserved sequence of 10–11 nucleotides [AAAGGR(G)GAAG; R, purine base] and/or additional sequence of 5 nucleotides [GAAAG], which mainly reside at the loop region in all the predicted secondary structures. Isolated RNAs were observed to efficiently inhibit double-stranded DNA unwinding activity of the helicase by up to ∼85% with an IC(50) value of 1.2 nM but show a slight effect on ATPase activity of the protein in the presence of cofactor, poly (rU). These results suggest that the pool of selected aptamers might be potentially useful as anti-SCV agents. |
---|