Cargando…

Predicting Skeletal Muscle and Whole-Body Insulin Sensitivity Using NMR-Metabolomic Profiling

PURPOSE: Abnormal lipoprotein and amino acid profiles are associated with insulin resistance and may help to identify this condition. The aim of this study was to create models estimating skeletal muscle and whole-body insulin sensitivity using fasting metabolite profiles and common clinical and lab...

Descripción completa

Detalles Bibliográficos
Autores principales: Klén, Riku, Honka, Miikka-Juhani, Hannukainen, Jarna C, Huovinen, Ville, Bucci, Marco, Latva-Rasku, Aino, Venäläinen, Mikko S, Kalliokoski, Kari K, Virtanen, Kirsi A, Lautamäki, Riikka, Iozzo, Patricia, Elo, Laura L, Nuutila, Pirjo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7093091/
https://www.ncbi.nlm.nih.gov/pubmed/32232183
http://dx.doi.org/10.1210/jendso/bvaa026
_version_ 1783510228653834240
author Klén, Riku
Honka, Miikka-Juhani
Hannukainen, Jarna C
Huovinen, Ville
Bucci, Marco
Latva-Rasku, Aino
Venäläinen, Mikko S
Kalliokoski, Kari K
Virtanen, Kirsi A
Lautamäki, Riikka
Iozzo, Patricia
Elo, Laura L
Nuutila, Pirjo
author_facet Klén, Riku
Honka, Miikka-Juhani
Hannukainen, Jarna C
Huovinen, Ville
Bucci, Marco
Latva-Rasku, Aino
Venäläinen, Mikko S
Kalliokoski, Kari K
Virtanen, Kirsi A
Lautamäki, Riikka
Iozzo, Patricia
Elo, Laura L
Nuutila, Pirjo
author_sort Klén, Riku
collection PubMed
description PURPOSE: Abnormal lipoprotein and amino acid profiles are associated with insulin resistance and may help to identify this condition. The aim of this study was to create models estimating skeletal muscle and whole-body insulin sensitivity using fasting metabolite profiles and common clinical and laboratory measures. MATERIAL AND METHODS: The cross-sectional study population included 259 subjects with normal or impaired fasting glucose or type 2 diabetes in whom skeletal muscle and whole-body insulin sensitivity (M-value) were measured during euglycemic hyperinsulinemic clamp. Muscle glucose uptake (GU) was measured directly using [(18)F]FDG-PET. Serum metabolites were measured using nuclear magnetic resonance (NMR) spectroscopy. We used linear regression to build the models for the muscle GU (Muscle-insulin sensitivity index [ISI]) and M-value (whole-body [WB]-ISI). The models were created and tested using randomly selected training (n = 173) and test groups (n = 86). The models were compared to common fasting indices of insulin sensitivity, homeostatic model assessment—insulin resistance (HOMA-IR) and the revised quantitative insulin sensitivity check index (QUICKI). RESULTS: WB-ISI had higher correlation with actual M-value than HOMA-IR or revised QUICKI (ρ = 0.83 vs −0.67 and 0.66; P < 0.05 for both comparisons), whereas the correlation of Muscle-ISI with the actual skeletal muscle GU was not significantly stronger than HOMA-IR’s or revised QUICKI’s (ρ = 0.67 vs −0.58 and 0.59; both nonsignificant) in the test dataset. CONCLUSION: Muscle-ISI and WB-ISI based on NMR-metabolomics and common laboratory measurements from fasting serum samples and basic anthropometrics are promising rapid and inexpensive tools for determining insulin sensitivity in at-risk individuals.
format Online
Article
Text
id pubmed-7093091
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-70930912020-03-30 Predicting Skeletal Muscle and Whole-Body Insulin Sensitivity Using NMR-Metabolomic Profiling Klén, Riku Honka, Miikka-Juhani Hannukainen, Jarna C Huovinen, Ville Bucci, Marco Latva-Rasku, Aino Venäläinen, Mikko S Kalliokoski, Kari K Virtanen, Kirsi A Lautamäki, Riikka Iozzo, Patricia Elo, Laura L Nuutila, Pirjo J Endocr Soc Clinical Research Article PURPOSE: Abnormal lipoprotein and amino acid profiles are associated with insulin resistance and may help to identify this condition. The aim of this study was to create models estimating skeletal muscle and whole-body insulin sensitivity using fasting metabolite profiles and common clinical and laboratory measures. MATERIAL AND METHODS: The cross-sectional study population included 259 subjects with normal or impaired fasting glucose or type 2 diabetes in whom skeletal muscle and whole-body insulin sensitivity (M-value) were measured during euglycemic hyperinsulinemic clamp. Muscle glucose uptake (GU) was measured directly using [(18)F]FDG-PET. Serum metabolites were measured using nuclear magnetic resonance (NMR) spectroscopy. We used linear regression to build the models for the muscle GU (Muscle-insulin sensitivity index [ISI]) and M-value (whole-body [WB]-ISI). The models were created and tested using randomly selected training (n = 173) and test groups (n = 86). The models were compared to common fasting indices of insulin sensitivity, homeostatic model assessment—insulin resistance (HOMA-IR) and the revised quantitative insulin sensitivity check index (QUICKI). RESULTS: WB-ISI had higher correlation with actual M-value than HOMA-IR or revised QUICKI (ρ = 0.83 vs −0.67 and 0.66; P < 0.05 for both comparisons), whereas the correlation of Muscle-ISI with the actual skeletal muscle GU was not significantly stronger than HOMA-IR’s or revised QUICKI’s (ρ = 0.67 vs −0.58 and 0.59; both nonsignificant) in the test dataset. CONCLUSION: Muscle-ISI and WB-ISI based on NMR-metabolomics and common laboratory measurements from fasting serum samples and basic anthropometrics are promising rapid and inexpensive tools for determining insulin sensitivity in at-risk individuals. Oxford University Press 2020-03-11 /pmc/articles/PMC7093091/ /pubmed/32232183 http://dx.doi.org/10.1210/jendso/bvaa026 Text en © Endocrine Society 2020. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Clinical Research Article
Klén, Riku
Honka, Miikka-Juhani
Hannukainen, Jarna C
Huovinen, Ville
Bucci, Marco
Latva-Rasku, Aino
Venäläinen, Mikko S
Kalliokoski, Kari K
Virtanen, Kirsi A
Lautamäki, Riikka
Iozzo, Patricia
Elo, Laura L
Nuutila, Pirjo
Predicting Skeletal Muscle and Whole-Body Insulin Sensitivity Using NMR-Metabolomic Profiling
title Predicting Skeletal Muscle and Whole-Body Insulin Sensitivity Using NMR-Metabolomic Profiling
title_full Predicting Skeletal Muscle and Whole-Body Insulin Sensitivity Using NMR-Metabolomic Profiling
title_fullStr Predicting Skeletal Muscle and Whole-Body Insulin Sensitivity Using NMR-Metabolomic Profiling
title_full_unstemmed Predicting Skeletal Muscle and Whole-Body Insulin Sensitivity Using NMR-Metabolomic Profiling
title_short Predicting Skeletal Muscle and Whole-Body Insulin Sensitivity Using NMR-Metabolomic Profiling
title_sort predicting skeletal muscle and whole-body insulin sensitivity using nmr-metabolomic profiling
topic Clinical Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7093091/
https://www.ncbi.nlm.nih.gov/pubmed/32232183
http://dx.doi.org/10.1210/jendso/bvaa026
work_keys_str_mv AT klenriku predictingskeletalmuscleandwholebodyinsulinsensitivityusingnmrmetabolomicprofiling
AT honkamiikkajuhani predictingskeletalmuscleandwholebodyinsulinsensitivityusingnmrmetabolomicprofiling
AT hannukainenjarnac predictingskeletalmuscleandwholebodyinsulinsensitivityusingnmrmetabolomicprofiling
AT huovinenville predictingskeletalmuscleandwholebodyinsulinsensitivityusingnmrmetabolomicprofiling
AT buccimarco predictingskeletalmuscleandwholebodyinsulinsensitivityusingnmrmetabolomicprofiling
AT latvaraskuaino predictingskeletalmuscleandwholebodyinsulinsensitivityusingnmrmetabolomicprofiling
AT venalainenmikkos predictingskeletalmuscleandwholebodyinsulinsensitivityusingnmrmetabolomicprofiling
AT kalliokoskikarik predictingskeletalmuscleandwholebodyinsulinsensitivityusingnmrmetabolomicprofiling
AT virtanenkirsia predictingskeletalmuscleandwholebodyinsulinsensitivityusingnmrmetabolomicprofiling
AT lautamakiriikka predictingskeletalmuscleandwholebodyinsulinsensitivityusingnmrmetabolomicprofiling
AT iozzopatricia predictingskeletalmuscleandwholebodyinsulinsensitivityusingnmrmetabolomicprofiling
AT elolaural predictingskeletalmuscleandwholebodyinsulinsensitivityusingnmrmetabolomicprofiling
AT nuutilapirjo predictingskeletalmuscleandwholebodyinsulinsensitivityusingnmrmetabolomicprofiling