Cargando…

Transient ischemia-reperfusion induces cortical hyperactivity and AMPAR trafficking in the somatosensory cortex

Brain ischemia results from cardiac arrest, stroke or head trauma. The structural basis of rescuing the synaptic impairment and cortical dysfunctions induced in the stage of ischemic-reperfusion can occur if therapeutic interventions are applied in time, but the functional basis for this resilience...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yuanyuan, Ding, Ran, Wang, Feifei, Guo, Cuiping, Liu, Aili, Wei, Liangpeng, Yuan, Shiyang, Chen, Feng, Hou, Shaowei, Ma, Zengguang, Zhang, Yan, Cudmore, Robert H., Wang, Xiaochuan, Shen, Hui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7093173/
https://www.ncbi.nlm.nih.gov/pubmed/32155129
http://dx.doi.org/10.18632/aging.102881
_version_ 1783510240483868672
author Li, Yuanyuan
Ding, Ran
Wang, Feifei
Guo, Cuiping
Liu, Aili
Wei, Liangpeng
Yuan, Shiyang
Chen, Feng
Hou, Shaowei
Ma, Zengguang
Zhang, Yan
Cudmore, Robert H.
Wang, Xiaochuan
Shen, Hui
author_facet Li, Yuanyuan
Ding, Ran
Wang, Feifei
Guo, Cuiping
Liu, Aili
Wei, Liangpeng
Yuan, Shiyang
Chen, Feng
Hou, Shaowei
Ma, Zengguang
Zhang, Yan
Cudmore, Robert H.
Wang, Xiaochuan
Shen, Hui
author_sort Li, Yuanyuan
collection PubMed
description Brain ischemia results from cardiac arrest, stroke or head trauma. The structural basis of rescuing the synaptic impairment and cortical dysfunctions induced in the stage of ischemic-reperfusion can occur if therapeutic interventions are applied in time, but the functional basis for this resilience remains elusive. Here, we explore the changes in cortical activity and a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) GluA1 subunit in spine (sGluA1) after transient ischemia-reperfusion in vivo for 28 days. Using in vivo two-photon microscopy in the mouse somatosensory cortex, we found that the average frequency of Ca(2+) transients in the spine (there was an unusual synchrony) was higher after 15 min of ischemia-reperfusion. In addition, the transient ischemia-reperfusion caused a reflective enhancement of AMPARs, which eventually restored to normal. The cortical hyperactivity (Ca(2+) transients) and the increase in AMPARs were successfully blocked by an NMDA receptor antagonist. Thus, the increase of AMPARs, cortical hyperactivity and the unusual synchrony might be the reason for reperfusion injury after short-term transient ischemia.
format Online
Article
Text
id pubmed-7093173
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Impact Journals
record_format MEDLINE/PubMed
spelling pubmed-70931732020-03-30 Transient ischemia-reperfusion induces cortical hyperactivity and AMPAR trafficking in the somatosensory cortex Li, Yuanyuan Ding, Ran Wang, Feifei Guo, Cuiping Liu, Aili Wei, Liangpeng Yuan, Shiyang Chen, Feng Hou, Shaowei Ma, Zengguang Zhang, Yan Cudmore, Robert H. Wang, Xiaochuan Shen, Hui Aging (Albany NY) Research Paper Brain ischemia results from cardiac arrest, stroke or head trauma. The structural basis of rescuing the synaptic impairment and cortical dysfunctions induced in the stage of ischemic-reperfusion can occur if therapeutic interventions are applied in time, but the functional basis for this resilience remains elusive. Here, we explore the changes in cortical activity and a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) GluA1 subunit in spine (sGluA1) after transient ischemia-reperfusion in vivo for 28 days. Using in vivo two-photon microscopy in the mouse somatosensory cortex, we found that the average frequency of Ca(2+) transients in the spine (there was an unusual synchrony) was higher after 15 min of ischemia-reperfusion. In addition, the transient ischemia-reperfusion caused a reflective enhancement of AMPARs, which eventually restored to normal. The cortical hyperactivity (Ca(2+) transients) and the increase in AMPARs were successfully blocked by an NMDA receptor antagonist. Thus, the increase of AMPARs, cortical hyperactivity and the unusual synchrony might be the reason for reperfusion injury after short-term transient ischemia. Impact Journals 2020-03-09 /pmc/articles/PMC7093173/ /pubmed/32155129 http://dx.doi.org/10.18632/aging.102881 Text en Copyright © 2020 Li et al. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Paper
Li, Yuanyuan
Ding, Ran
Wang, Feifei
Guo, Cuiping
Liu, Aili
Wei, Liangpeng
Yuan, Shiyang
Chen, Feng
Hou, Shaowei
Ma, Zengguang
Zhang, Yan
Cudmore, Robert H.
Wang, Xiaochuan
Shen, Hui
Transient ischemia-reperfusion induces cortical hyperactivity and AMPAR trafficking in the somatosensory cortex
title Transient ischemia-reperfusion induces cortical hyperactivity and AMPAR trafficking in the somatosensory cortex
title_full Transient ischemia-reperfusion induces cortical hyperactivity and AMPAR trafficking in the somatosensory cortex
title_fullStr Transient ischemia-reperfusion induces cortical hyperactivity and AMPAR trafficking in the somatosensory cortex
title_full_unstemmed Transient ischemia-reperfusion induces cortical hyperactivity and AMPAR trafficking in the somatosensory cortex
title_short Transient ischemia-reperfusion induces cortical hyperactivity and AMPAR trafficking in the somatosensory cortex
title_sort transient ischemia-reperfusion induces cortical hyperactivity and ampar trafficking in the somatosensory cortex
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7093173/
https://www.ncbi.nlm.nih.gov/pubmed/32155129
http://dx.doi.org/10.18632/aging.102881
work_keys_str_mv AT liyuanyuan transientischemiareperfusioninducescorticalhyperactivityandampartraffickinginthesomatosensorycortex
AT dingran transientischemiareperfusioninducescorticalhyperactivityandampartraffickinginthesomatosensorycortex
AT wangfeifei transientischemiareperfusioninducescorticalhyperactivityandampartraffickinginthesomatosensorycortex
AT guocuiping transientischemiareperfusioninducescorticalhyperactivityandampartraffickinginthesomatosensorycortex
AT liuaili transientischemiareperfusioninducescorticalhyperactivityandampartraffickinginthesomatosensorycortex
AT weiliangpeng transientischemiareperfusioninducescorticalhyperactivityandampartraffickinginthesomatosensorycortex
AT yuanshiyang transientischemiareperfusioninducescorticalhyperactivityandampartraffickinginthesomatosensorycortex
AT chenfeng transientischemiareperfusioninducescorticalhyperactivityandampartraffickinginthesomatosensorycortex
AT houshaowei transientischemiareperfusioninducescorticalhyperactivityandampartraffickinginthesomatosensorycortex
AT mazengguang transientischemiareperfusioninducescorticalhyperactivityandampartraffickinginthesomatosensorycortex
AT zhangyan transientischemiareperfusioninducescorticalhyperactivityandampartraffickinginthesomatosensorycortex
AT cudmoreroberth transientischemiareperfusioninducescorticalhyperactivityandampartraffickinginthesomatosensorycortex
AT wangxiaochuan transientischemiareperfusioninducescorticalhyperactivityandampartraffickinginthesomatosensorycortex
AT shenhui transientischemiareperfusioninducescorticalhyperactivityandampartraffickinginthesomatosensorycortex