Cargando…

Role of eotaxin-1/CCL11 in sepsis-induced myocardial injury in elderly patients

Myocardial injury is a serious complication of sepsis. The present study aimed to identify potential biomarkers of sepsis-induced myocardial injury. Differentially expressed genes (DEGs) in patients and mice with sepsis-induced myocardial injury were identified via bioinformatic analysis. The identi...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Ying, Zhao, Youguang, Qiu, Chenming, Yang, Yuanrui, Liao, Guihua, Wu, Xi, Zhang, Xiaowan, Zhang, Qian, Zhang, Ru, Wang, Zhang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7093174/
https://www.ncbi.nlm.nih.gov/pubmed/32147601
http://dx.doi.org/10.18632/aging.102896
Descripción
Sumario:Myocardial injury is a serious complication of sepsis. The present study aimed to identify potential biomarkers of sepsis-induced myocardial injury. Differentially expressed genes (DEGs) in patients and mice with sepsis-induced myocardial injury were identified via bioinformatic analysis. The identified DEG was tested in elderly patients with sepsis-induced myocardial injury. We identified 19 co-expressed DEGs. The most significant DEG was eotaxin-1/CCL11. We enrolled 25 controls without infections and 28 patients with sepsis-induced myocardial injury. Six of patients died within 30 days. Circulating eotaxin-1/CCL11 levels were significantly higher in patients with sepsis-induced myocardial injury than controls and were higher in non-survivors than survivors (both P < 0.01). Eotaxin-1/CCL11 was positively correlated with troponin I (r=0.48, P=0.01), B-type natriuretic peptide (BNP, r=0.44, P=0.02), and white blood cell (WBC) count (r=0.41, P=0.03). For the prediction of 30-day mortality, eotaxin-1/CCL11 had the greatest discriminatory ability (AUC 0.97) compared with troponin I (AUC 0.89), BNP (AUC 0.80), and WBC count (AUC 0.86). Taken together, eotaxin-1/CCL11 was upregulated in sepsis-injured myocardium and circulating eotaxin-1/CCL11 was a biomarker for predicting severity and mortality of elderly patients with sepsis-induced myocardial injury. These results suggest that eotaxin-1/CCL11 may become a useful biomarkers and potential therapeutic target for sepsis-induced myocardial injury.