Cargando…
Radiomics model based on preoperative gadoxetic acid-enhanced MRI for predicting liver failure
BACKGROUND: Postoperative liver failure is the most severe complication in cirrhotic patients with hepatocellular carcinoma (HCC) after major hepatectomy. Current available clinical indexes predicting postoperative residual liver function are not sufficiently accurate. AIM: To determine a radiomics...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Baishideng Publishing Group Inc
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7093309/ https://www.ncbi.nlm.nih.gov/pubmed/32231424 http://dx.doi.org/10.3748/wjg.v26.i11.1208 |
_version_ | 1783510255133523968 |
---|---|
author | Zhu, Wang-Shu Shi, Si-Ya Yang, Ze-Hong Song, Chao Shen, Jun |
author_facet | Zhu, Wang-Shu Shi, Si-Ya Yang, Ze-Hong Song, Chao Shen, Jun |
author_sort | Zhu, Wang-Shu |
collection | PubMed |
description | BACKGROUND: Postoperative liver failure is the most severe complication in cirrhotic patients with hepatocellular carcinoma (HCC) after major hepatectomy. Current available clinical indexes predicting postoperative residual liver function are not sufficiently accurate. AIM: To determine a radiomics model based on preoperative gadoxetic acid-enhanced magnetic resonance imaging for predicting liver failure in cirrhotic patients with HCC after major hepatectomy. METHODS: For this retrospective study, a radiomics-based model was developed based on preoperative hepatobiliary phase gadoxetic acid-enhanced magnetic resonance images in 101 patients with HCC between June 2012 and June 2018. Sixty-one radiomic features were extracted from hepatobiliary phase images and selected by the least absolute shrinkage and selection operator method to construct a radiomics signature. A clinical prediction model, and radiomics-based model incorporating significant clinical indexes and radiomics signature were built using multivariable logistic regression analysis. The integrated radiomics-based model was presented as a radiomics nomogram. The performances of clinical prediction model, radiomics signature, and radiomics-based model for predicting post-operative liver failure were determined using receiver operating characteristics curve, calibration curve, and decision curve analyses. RESULTS: Five radiomics features from hepatobiliary phase images were selected to construct the radiomics signature. The clinical prediction model, radiomics signature, and radiomics-based model incorporating indocyanine green clearance rate at 15 min and radiomics signature showed favorable performance for predicting postoperative liver failure (area under the curve: 0.809-0.894). The radiomics-based model achieved the highest performance for predicting liver failure (area under the curve: 0.894; 95%CI: 0.823-0.964). The integrated discrimination improvement analysis showed a significant improvement in the accuracy of liver failure prediction when radiomics signature was added to the clinical prediction model (integrated discrimination improvement = 0.117, P = 0.002). The calibration curve and an insignificant Hosmer-Lemeshow test statistic (P = 0.841) demonstrated good calibration of the radiomics-based model. The decision curve analysis showed that patients would benefit more from a radiomics-based prediction model than from a clinical prediction model and radiomics signature alone. CONCLUSION: A radiomics-based model of preoperative gadoxetic acid–enhanced MRI can be used to predict liver failure in cirrhotic patients with HCC after major hepatectomy. |
format | Online Article Text |
id | pubmed-7093309 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Baishideng Publishing Group Inc |
record_format | MEDLINE/PubMed |
spelling | pubmed-70933092020-03-30 Radiomics model based on preoperative gadoxetic acid-enhanced MRI for predicting liver failure Zhu, Wang-Shu Shi, Si-Ya Yang, Ze-Hong Song, Chao Shen, Jun World J Gastroenterol Retrospective Study BACKGROUND: Postoperative liver failure is the most severe complication in cirrhotic patients with hepatocellular carcinoma (HCC) after major hepatectomy. Current available clinical indexes predicting postoperative residual liver function are not sufficiently accurate. AIM: To determine a radiomics model based on preoperative gadoxetic acid-enhanced magnetic resonance imaging for predicting liver failure in cirrhotic patients with HCC after major hepatectomy. METHODS: For this retrospective study, a radiomics-based model was developed based on preoperative hepatobiliary phase gadoxetic acid-enhanced magnetic resonance images in 101 patients with HCC between June 2012 and June 2018. Sixty-one radiomic features were extracted from hepatobiliary phase images and selected by the least absolute shrinkage and selection operator method to construct a radiomics signature. A clinical prediction model, and radiomics-based model incorporating significant clinical indexes and radiomics signature were built using multivariable logistic regression analysis. The integrated radiomics-based model was presented as a radiomics nomogram. The performances of clinical prediction model, radiomics signature, and radiomics-based model for predicting post-operative liver failure were determined using receiver operating characteristics curve, calibration curve, and decision curve analyses. RESULTS: Five radiomics features from hepatobiliary phase images were selected to construct the radiomics signature. The clinical prediction model, radiomics signature, and radiomics-based model incorporating indocyanine green clearance rate at 15 min and radiomics signature showed favorable performance for predicting postoperative liver failure (area under the curve: 0.809-0.894). The radiomics-based model achieved the highest performance for predicting liver failure (area under the curve: 0.894; 95%CI: 0.823-0.964). The integrated discrimination improvement analysis showed a significant improvement in the accuracy of liver failure prediction when radiomics signature was added to the clinical prediction model (integrated discrimination improvement = 0.117, P = 0.002). The calibration curve and an insignificant Hosmer-Lemeshow test statistic (P = 0.841) demonstrated good calibration of the radiomics-based model. The decision curve analysis showed that patients would benefit more from a radiomics-based prediction model than from a clinical prediction model and radiomics signature alone. CONCLUSION: A radiomics-based model of preoperative gadoxetic acid–enhanced MRI can be used to predict liver failure in cirrhotic patients with HCC after major hepatectomy. Baishideng Publishing Group Inc 2020-03-21 2020-03-21 /pmc/articles/PMC7093309/ /pubmed/32231424 http://dx.doi.org/10.3748/wjg.v26.i11.1208 Text en ©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved. http://creativecommons.org/licenses/by-nc/4.0/ This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. |
spellingShingle | Retrospective Study Zhu, Wang-Shu Shi, Si-Ya Yang, Ze-Hong Song, Chao Shen, Jun Radiomics model based on preoperative gadoxetic acid-enhanced MRI for predicting liver failure |
title | Radiomics model based on preoperative gadoxetic acid-enhanced MRI for predicting liver failure |
title_full | Radiomics model based on preoperative gadoxetic acid-enhanced MRI for predicting liver failure |
title_fullStr | Radiomics model based on preoperative gadoxetic acid-enhanced MRI for predicting liver failure |
title_full_unstemmed | Radiomics model based on preoperative gadoxetic acid-enhanced MRI for predicting liver failure |
title_short | Radiomics model based on preoperative gadoxetic acid-enhanced MRI for predicting liver failure |
title_sort | radiomics model based on preoperative gadoxetic acid-enhanced mri for predicting liver failure |
topic | Retrospective Study |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7093309/ https://www.ncbi.nlm.nih.gov/pubmed/32231424 http://dx.doi.org/10.3748/wjg.v26.i11.1208 |
work_keys_str_mv | AT zhuwangshu radiomicsmodelbasedonpreoperativegadoxeticacidenhancedmriforpredictingliverfailure AT shisiya radiomicsmodelbasedonpreoperativegadoxeticacidenhancedmriforpredictingliverfailure AT yangzehong radiomicsmodelbasedonpreoperativegadoxeticacidenhancedmriforpredictingliverfailure AT songchao radiomicsmodelbasedonpreoperativegadoxeticacidenhancedmriforpredictingliverfailure AT shenjun radiomicsmodelbasedonpreoperativegadoxeticacidenhancedmriforpredictingliverfailure |