Cargando…
Spatial and temporal adaptation of predictive saccades based on motion inference
Moving objects are often occluded behind larger, stationary objects, but we can easily predict when and where they reappear. Here, we show that the prediction of object reappearance is subject to adaptive learning. When monkeys generated predictive saccades to the location of target reappearance, sy...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7093452/ https://www.ncbi.nlm.nih.gov/pubmed/32210297 http://dx.doi.org/10.1038/s41598-020-62211-8 |
Sumario: | Moving objects are often occluded behind larger, stationary objects, but we can easily predict when and where they reappear. Here, we show that the prediction of object reappearance is subject to adaptive learning. When monkeys generated predictive saccades to the location of target reappearance, systematic changes in the location or timing of target reappearance independently altered the endpoint or latency of the saccades. Furthermore, spatial adaptation of predictive saccades did not alter visually triggered reactive saccades, whereas adaptation of reactive saccades altered the metrics of predictive saccades. Our results suggest that the extrapolation of motion trajectory may be subject to spatial and temporal recalibration mechanisms located upstream from the site of reactive saccade adaptation. Repetitive exposure of visual error for saccades induces qualitatively different adaptation, which might be attributable to different regions in the cerebellum that regulate learning of trajectory prediction and saccades. |
---|