Cargando…

Stochastic dynamics of an epidemic with recurrent spillovers from an endemic reservoir

Most emerging human infectious diseases have an animal origin. While zoonotic diseases originate from a reservoir, most theoretical studies have principally focused on single-host processes, either exclusively humans or exclusively animals, without considering the importance of animal to human trans...

Descripción completa

Detalles Bibliográficos
Autores principales: Voinson, Marina, Alvergne, Alexandra, Billiard, Sylvain, Smadi, Charline
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7094102/
https://www.ncbi.nlm.nih.gov/pubmed/30121292
http://dx.doi.org/10.1016/j.jtbi.2018.08.017
Descripción
Sumario:Most emerging human infectious diseases have an animal origin. While zoonotic diseases originate from a reservoir, most theoretical studies have principally focused on single-host processes, either exclusively humans or exclusively animals, without considering the importance of animal to human transmission (i.e. spillover transmission) for understanding the dynamics of emerging infectious diseases. Here we aim to investigate the importance of spillover transmission for explaining the number and the size of outbreaks. We propose a simple continuous time stochastic Susceptible-Infected-Recovered model with a recurrent infection of an incidental host from a reservoir (e.g. humans by a zoonotic species), considering two modes of transmission, (1) animal-to-human and (2) human-to-human. The model assumes that (i) epidemiological processes are faster than other processes such as demographics or pathogen evolution and that (ii) an epidemic occurs until there are no susceptible individuals left. The results show that during an epidemic, even when the pathogens are barely contagious, multiple outbreaks are observed due to spillover transmission. Overall, the findings demonstrate that the only consideration of direct transmission between individuals is not sufficient to explain the dynamics of zoonotic pathogens in an incidental host.