Cargando…
Self-similarity analysis of eubacteria genome based on weighted graph
We introduce a weighted graph model to investigate the self-similarity characteristics of eubacteria genomes. The regular treating in similarity comparison about genome is to discover the evolution distance among different genomes. Few people focus their attention on the overall statistical characte...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7094106/ https://www.ncbi.nlm.nih.gov/pubmed/21496459 http://dx.doi.org/10.1016/j.jtbi.2011.03.033 |
Sumario: | We introduce a weighted graph model to investigate the self-similarity characteristics of eubacteria genomes. The regular treating in similarity comparison about genome is to discover the evolution distance among different genomes. Few people focus their attention on the overall statistical characteristics of each gene compared with other genes in the same genome. In our model, each genome is attributed to a weighted graph, whose topology describes the similarity relationship among genes in the same genome. Based on the related weighted graph theory, we extract some quantified statistical variables from the topology, and give the distribution of some variables derived from the largest social structure in the topology. The 23 eubacteria recently studied by Sorimachi and Okayasu are markedly classified into two different groups by their double logarithmic point-plots describing the similarity relationship among genes of the largest social structure in genome. The results show that the proposed model may provide us with some new sights to understand the structures and evolution patterns determined from the complete genomes. |
---|