Cargando…

Production of Authentic SARS-CoV M(pro) with Enhanced Activity: Application as a Novel Tag-cleavage Endopeptidase for Protein Overproduction

The viral proteases have proven to be the most selective and useful for removing the fusion tags in fusion protein expression systems. As a key enzyme in the viral life-cycle, the main protease (M(pro)) is most attractive for drug design targeting the SARS coronavirus (SARS-CoV), the etiological age...

Descripción completa

Detalles Bibliográficos
Autores principales: Xue, Xiaoyu, Yang, Haitao, Shen, Wei, Zhao, Qi, Li, Jun, Yang, Kailin, Chen, Cheng, Jin, Yinghua, Bartlam, Mark, Rao, Zihe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7094453/
https://www.ncbi.nlm.nih.gov/pubmed/17189639
http://dx.doi.org/10.1016/j.jmb.2006.11.073
Descripción
Sumario:The viral proteases have proven to be the most selective and useful for removing the fusion tags in fusion protein expression systems. As a key enzyme in the viral life-cycle, the main protease (M(pro)) is most attractive for drug design targeting the SARS coronavirus (SARS-CoV), the etiological agent responsible for the outbreak of severe acute respiratory syndrome (SARS) in 2003. In this study, SARS-CoV M(pro) was used to specifically remove the GST tag in a new fusion protein expression system. We report a new method to produce wild-type (WT) SARS-CoV M(pro) with authentic N and C termini, and compare the activity of WT protease with those of three different types of SARS-CoV M(pro) with additional residues at the N or C terminus. Our results show that additional residues at the N terminus, but not at the C terminus, of M(pro) are detrimental to enzyme activity. To explain this, the crystal structures of WT SARS-CoV M(pro) and its complex with a Michael acceptor inhibitor were determined to 1.6 Å and 1.95 Å resolution respectively. These crystal structures reveal that the first residue of this protease is important for sustaining the substrate-binding pocket and inhibitor binding. This study suggests that SARS-CoV M(pro) could serve as a new tag-cleavage endopeptidase for protein overproduction, and the WT SARS-CoV M(pro) is more appropriate for mechanistic characterization and inhibitor design.