Cargando…

Nanoparticle interactions with immune cells dominate tumor retention and induce T cell–mediated tumor suppression in models of breast cancer

The factors that influence nanoparticle fate in vivo following systemic delivery remain an area of intense interest. Of particular interest is whether labeling with a cancer-specific antibody ligand (“active targeting”) is superior to its unlabeled counterpart (“passive targeting”). Using models of...

Descripción completa

Detalles Bibliográficos
Autores principales: Korangath, Preethi, Barnett, James D., Sharma, Anirudh, Henderson, Elizabeth T., Stewart, Jacqueline, Yu, Shu-Han, Kandala, Sri Kamal, Yang, Chun-Ting, Caserto, Julia S., Hedayati, Mohammad, Armstrong, Todd D., Jaffee, Elizabeth, Gruettner, Cordula, Zhou, Xian C., Fu, Wei, Hu, Chen, Sukumar, Saraswati, Simons, Brian W., Ivkov, Robert
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7096167/
https://www.ncbi.nlm.nih.gov/pubmed/32232146
http://dx.doi.org/10.1126/sciadv.aay1601
Descripción
Sumario:The factors that influence nanoparticle fate in vivo following systemic delivery remain an area of intense interest. Of particular interest is whether labeling with a cancer-specific antibody ligand (“active targeting”) is superior to its unlabeled counterpart (“passive targeting”). Using models of breast cancer in three immune variants of mice, we demonstrate that intratumor retention of antibody-labeled nanoparticles was determined by tumor-associated dendritic cells, neutrophils, monocytes, and macrophages and not by antibody-antigen interactions. Systemic exposure to either nanoparticle type induced an immune response leading to CD8(+) T cell infiltration and tumor growth delay that was independent of antibody therapeutic activity. These results suggest that antitumor immune responses can be induced by systemic exposure to nanoparticles without requiring a therapeutic payload. We conclude that immune status of the host and microenvironment of solid tumors are critical variables for studies in cancer nanomedicine and that nanoparticle technology may harbor potential for cancer immunotherapy.