Cargando…

The Spectrum-STI Groups model: syphilis prevalence trends across high-risk and lower-risk populations in Yunnan, China

The Spectrum-STI model, structured by sub-groups within a population, was used in a workshop in Yunnan, China, to estimate provincial trends in active syphilis in 15 to 49-year-old adults. Syphilis prevalence data from female sex workers (FSW), men who have sex with men (MSM), and lower-risk women a...

Descripción completa

Detalles Bibliográficos
Autores principales: Korenromp, Eline L., Zhang, Wanyue, Zhang, Xiujie, Ma, Yanling, Jia, Manhong, Luo, Hongbin, Guo, Yan, Zhang, Xiaobin, Gong, Xiangdong, Chen, Fangfang, Li, Jing, Nishijima, Takeshi, Chen, Zhongdan, Taylor, Melanie M., Hecht, Kendall, Mahiané, Guy, Rowley, Jane, Chen, Xiang-Sheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7096386/
https://www.ncbi.nlm.nih.gov/pubmed/32214152
http://dx.doi.org/10.1038/s41598-020-62208-3
_version_ 1783510791504265216
author Korenromp, Eline L.
Zhang, Wanyue
Zhang, Xiujie
Ma, Yanling
Jia, Manhong
Luo, Hongbin
Guo, Yan
Zhang, Xiaobin
Gong, Xiangdong
Chen, Fangfang
Li, Jing
Nishijima, Takeshi
Chen, Zhongdan
Taylor, Melanie M.
Hecht, Kendall
Mahiané, Guy
Rowley, Jane
Chen, Xiang-Sheng
author_facet Korenromp, Eline L.
Zhang, Wanyue
Zhang, Xiujie
Ma, Yanling
Jia, Manhong
Luo, Hongbin
Guo, Yan
Zhang, Xiaobin
Gong, Xiangdong
Chen, Fangfang
Li, Jing
Nishijima, Takeshi
Chen, Zhongdan
Taylor, Melanie M.
Hecht, Kendall
Mahiané, Guy
Rowley, Jane
Chen, Xiang-Sheng
author_sort Korenromp, Eline L.
collection PubMed
description The Spectrum-STI model, structured by sub-groups within a population, was used in a workshop in Yunnan, China, to estimate provincial trends in active syphilis in 15 to 49-year-old adults. Syphilis prevalence data from female sex workers (FSW), men who have sex with men (MSM), and lower-risk women and men in Yunnan were identified through literature searches and local experts. Sources included antenatal care clinic screening, blood donor screening, HIV/STI bio-behavioural surveys, sentinel surveillance, and epidemiology studies. The 2017 provincial syphilis prevalence estimates were 0.26% (95% confidence interval 0.17–0.34%) in women and 0.28% (0.20–0.36%) in men. Estimated prevalence was 6.8-fold higher in FSW (1.69% (0.68–3.97%) than in lower-risk women (0.25% (0.18–0.35%)), and 22.7-fold higher in MSM (5.35% (2.74–12.47%) than in lower-risk men (0.24% (0.17–0.31%). For all populations, the 2017 estimates were below the 2005 estimates, but differences were not significant. In 2017 FSW and MSM together accounted for 9.3% of prevalent cases. These estimates suggest Yunnan’s STI programs have kept the overall prevalence of syphilis low, but prevalence remains high in FSW and MSM. Strengthening efforts targeting FSW and MSM, and identification of other risk populations e.g. among heterosexual men, are critical to reduce syphilis.
format Online
Article
Text
id pubmed-7096386
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-70963862020-03-30 The Spectrum-STI Groups model: syphilis prevalence trends across high-risk and lower-risk populations in Yunnan, China Korenromp, Eline L. Zhang, Wanyue Zhang, Xiujie Ma, Yanling Jia, Manhong Luo, Hongbin Guo, Yan Zhang, Xiaobin Gong, Xiangdong Chen, Fangfang Li, Jing Nishijima, Takeshi Chen, Zhongdan Taylor, Melanie M. Hecht, Kendall Mahiané, Guy Rowley, Jane Chen, Xiang-Sheng Sci Rep Article The Spectrum-STI model, structured by sub-groups within a population, was used in a workshop in Yunnan, China, to estimate provincial trends in active syphilis in 15 to 49-year-old adults. Syphilis prevalence data from female sex workers (FSW), men who have sex with men (MSM), and lower-risk women and men in Yunnan were identified through literature searches and local experts. Sources included antenatal care clinic screening, blood donor screening, HIV/STI bio-behavioural surveys, sentinel surveillance, and epidemiology studies. The 2017 provincial syphilis prevalence estimates were 0.26% (95% confidence interval 0.17–0.34%) in women and 0.28% (0.20–0.36%) in men. Estimated prevalence was 6.8-fold higher in FSW (1.69% (0.68–3.97%) than in lower-risk women (0.25% (0.18–0.35%)), and 22.7-fold higher in MSM (5.35% (2.74–12.47%) than in lower-risk men (0.24% (0.17–0.31%). For all populations, the 2017 estimates were below the 2005 estimates, but differences were not significant. In 2017 FSW and MSM together accounted for 9.3% of prevalent cases. These estimates suggest Yunnan’s STI programs have kept the overall prevalence of syphilis low, but prevalence remains high in FSW and MSM. Strengthening efforts targeting FSW and MSM, and identification of other risk populations e.g. among heterosexual men, are critical to reduce syphilis. Nature Publishing Group UK 2020-03-25 /pmc/articles/PMC7096386/ /pubmed/32214152 http://dx.doi.org/10.1038/s41598-020-62208-3 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Korenromp, Eline L.
Zhang, Wanyue
Zhang, Xiujie
Ma, Yanling
Jia, Manhong
Luo, Hongbin
Guo, Yan
Zhang, Xiaobin
Gong, Xiangdong
Chen, Fangfang
Li, Jing
Nishijima, Takeshi
Chen, Zhongdan
Taylor, Melanie M.
Hecht, Kendall
Mahiané, Guy
Rowley, Jane
Chen, Xiang-Sheng
The Spectrum-STI Groups model: syphilis prevalence trends across high-risk and lower-risk populations in Yunnan, China
title The Spectrum-STI Groups model: syphilis prevalence trends across high-risk and lower-risk populations in Yunnan, China
title_full The Spectrum-STI Groups model: syphilis prevalence trends across high-risk and lower-risk populations in Yunnan, China
title_fullStr The Spectrum-STI Groups model: syphilis prevalence trends across high-risk and lower-risk populations in Yunnan, China
title_full_unstemmed The Spectrum-STI Groups model: syphilis prevalence trends across high-risk and lower-risk populations in Yunnan, China
title_short The Spectrum-STI Groups model: syphilis prevalence trends across high-risk and lower-risk populations in Yunnan, China
title_sort spectrum-sti groups model: syphilis prevalence trends across high-risk and lower-risk populations in yunnan, china
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7096386/
https://www.ncbi.nlm.nih.gov/pubmed/32214152
http://dx.doi.org/10.1038/s41598-020-62208-3
work_keys_str_mv AT korenrompelinel thespectrumstigroupsmodelsyphilisprevalencetrendsacrosshighriskandlowerriskpopulationsinyunnanchina
AT zhangwanyue thespectrumstigroupsmodelsyphilisprevalencetrendsacrosshighriskandlowerriskpopulationsinyunnanchina
AT zhangxiujie thespectrumstigroupsmodelsyphilisprevalencetrendsacrosshighriskandlowerriskpopulationsinyunnanchina
AT mayanling thespectrumstigroupsmodelsyphilisprevalencetrendsacrosshighriskandlowerriskpopulationsinyunnanchina
AT jiamanhong thespectrumstigroupsmodelsyphilisprevalencetrendsacrosshighriskandlowerriskpopulationsinyunnanchina
AT luohongbin thespectrumstigroupsmodelsyphilisprevalencetrendsacrosshighriskandlowerriskpopulationsinyunnanchina
AT guoyan thespectrumstigroupsmodelsyphilisprevalencetrendsacrosshighriskandlowerriskpopulationsinyunnanchina
AT zhangxiaobin thespectrumstigroupsmodelsyphilisprevalencetrendsacrosshighriskandlowerriskpopulationsinyunnanchina
AT gongxiangdong thespectrumstigroupsmodelsyphilisprevalencetrendsacrosshighriskandlowerriskpopulationsinyunnanchina
AT chenfangfang thespectrumstigroupsmodelsyphilisprevalencetrendsacrosshighriskandlowerriskpopulationsinyunnanchina
AT lijing thespectrumstigroupsmodelsyphilisprevalencetrendsacrosshighriskandlowerriskpopulationsinyunnanchina
AT nishijimatakeshi thespectrumstigroupsmodelsyphilisprevalencetrendsacrosshighriskandlowerriskpopulationsinyunnanchina
AT chenzhongdan thespectrumstigroupsmodelsyphilisprevalencetrendsacrosshighriskandlowerriskpopulationsinyunnanchina
AT taylormelaniem thespectrumstigroupsmodelsyphilisprevalencetrendsacrosshighriskandlowerriskpopulationsinyunnanchina
AT hechtkendall thespectrumstigroupsmodelsyphilisprevalencetrendsacrosshighriskandlowerriskpopulationsinyunnanchina
AT mahianeguy thespectrumstigroupsmodelsyphilisprevalencetrendsacrosshighriskandlowerriskpopulationsinyunnanchina
AT rowleyjane thespectrumstigroupsmodelsyphilisprevalencetrendsacrosshighriskandlowerriskpopulationsinyunnanchina
AT chenxiangsheng thespectrumstigroupsmodelsyphilisprevalencetrendsacrosshighriskandlowerriskpopulationsinyunnanchina
AT korenrompelinel spectrumstigroupsmodelsyphilisprevalencetrendsacrosshighriskandlowerriskpopulationsinyunnanchina
AT zhangwanyue spectrumstigroupsmodelsyphilisprevalencetrendsacrosshighriskandlowerriskpopulationsinyunnanchina
AT zhangxiujie spectrumstigroupsmodelsyphilisprevalencetrendsacrosshighriskandlowerriskpopulationsinyunnanchina
AT mayanling spectrumstigroupsmodelsyphilisprevalencetrendsacrosshighriskandlowerriskpopulationsinyunnanchina
AT jiamanhong spectrumstigroupsmodelsyphilisprevalencetrendsacrosshighriskandlowerriskpopulationsinyunnanchina
AT luohongbin spectrumstigroupsmodelsyphilisprevalencetrendsacrosshighriskandlowerriskpopulationsinyunnanchina
AT guoyan spectrumstigroupsmodelsyphilisprevalencetrendsacrosshighriskandlowerriskpopulationsinyunnanchina
AT zhangxiaobin spectrumstigroupsmodelsyphilisprevalencetrendsacrosshighriskandlowerriskpopulationsinyunnanchina
AT gongxiangdong spectrumstigroupsmodelsyphilisprevalencetrendsacrosshighriskandlowerriskpopulationsinyunnanchina
AT chenfangfang spectrumstigroupsmodelsyphilisprevalencetrendsacrosshighriskandlowerriskpopulationsinyunnanchina
AT lijing spectrumstigroupsmodelsyphilisprevalencetrendsacrosshighriskandlowerriskpopulationsinyunnanchina
AT nishijimatakeshi spectrumstigroupsmodelsyphilisprevalencetrendsacrosshighriskandlowerriskpopulationsinyunnanchina
AT chenzhongdan spectrumstigroupsmodelsyphilisprevalencetrendsacrosshighriskandlowerriskpopulationsinyunnanchina
AT taylormelaniem spectrumstigroupsmodelsyphilisprevalencetrendsacrosshighriskandlowerriskpopulationsinyunnanchina
AT hechtkendall spectrumstigroupsmodelsyphilisprevalencetrendsacrosshighriskandlowerriskpopulationsinyunnanchina
AT mahianeguy spectrumstigroupsmodelsyphilisprevalencetrendsacrosshighriskandlowerriskpopulationsinyunnanchina
AT rowleyjane spectrumstigroupsmodelsyphilisprevalencetrendsacrosshighriskandlowerriskpopulationsinyunnanchina
AT chenxiangsheng spectrumstigroupsmodelsyphilisprevalencetrendsacrosshighriskandlowerriskpopulationsinyunnanchina