Cargando…
Human activity recognition using magnetic induction-based motion signals and deep recurrent neural networks
Recognizing human physical activities using wireless sensor networks has attracted significant research interest due to its broad range of applications, such as healthcare, rehabilitation, athletics, and senior monitoring. There are critical challenges inherent in designing a sensor-based activity r...
Autores principales: | Golestani, Negar, Moghaddam, Mahta |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7096402/ https://www.ncbi.nlm.nih.gov/pubmed/32214095 http://dx.doi.org/10.1038/s41467-020-15086-2 |
Ejemplares similares
-
Author Correction: Human activity recognition using magnetic induction-based motion signals and deep recurrent neural networks
por: Golestani, Negar, et al.
Publicado: (2020) -
Wearable magnetic induction-based approach toward 3D motion tracking
por: Golestani, Negar, et al.
Publicado: (2021) -
Deep Recurrent Neural Networks for Human Activity Recognition
por: Murad, Abdulmajid, et al.
Publicado: (2017) -
Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition
por: Ordóñez, Francisco Javier, et al.
Publicado: (2016) -
Design and Implementation of Human Motion Recognition Information Processing System Based on LSTM Recurrent Neural Network Algorithm
por: Li, Xue
Publicado: (2021)