Cargando…
Field evaluation of sex pheromones and binding specificity of pheromone binding protein 4 in Tryporyza intacta (Lepidoptera: Crambidae)
The recognition of chemical signal including volatile odorants and pheromones is very important in the olfactory physiological behaviors of insects, such as avoiding predators, seeking food and mating partners. The sugarcane borer, Tryporyza intacta is the most harmful insect in sugarcane region in...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7096405/ https://www.ncbi.nlm.nih.gov/pubmed/32214117 http://dx.doi.org/10.1038/s41598-020-62092-x |
Sumario: | The recognition of chemical signal including volatile odorants and pheromones is very important in the olfactory physiological behaviors of insects, such as avoiding predators, seeking food and mating partners. The sugarcane borer, Tryporyza intacta is the most harmful insect in sugarcane region in Southeast Asia and Southern China, however, the study of their molecular biology and physiology was limited. Here we demonstrated that the sex pheromone (E11-16:Ald: Z11-16:Ald = 7:3) were most effective to T. intacta. In addition, compared the traditional rubber lure, a new microsphere formulation lure can optimize the trapping effect and might be widely used in the sugarcane growing area. To obtain a better understanding of the olfactory molecular mechanism of pheromone-based mate recognition system, we have cloned the full-length gene of the TintPBP4 and expressed in Escherichia coli. Our phylogenetic analysis highlighted that the TintPBP4 was highly conserved among diverse species of Lepidoptera. Furthermore, the results of QRT-PCR demonstrated that TintPBP4 transcripts were abundantly expressed in the antennae of T. intacta, especially in the male adults. The fluorescence binding experiments showed the TintPBP4 exhibited strong binding capacities to the sex pheromone components. These results will not only provide more understanding for the functional analysis of olfactory proteins from T. intacta, but also assist in the exploitation and development of sex pheromones in the integrated biological control of this pest. |
---|