Cargando…

Generating high quality libraries for DIA MS with empirically corrected peptide predictions

Data-independent acquisition approaches typically rely on experiment-specific spectrum libraries, requiring offline fractionation and tens to hundreds of injections. We demonstrate a library generation workflow that leverages fragmentation and retention time prediction to build libraries containing...

Descripción completa

Detalles Bibliográficos
Autores principales: Searle, Brian C., Swearingen, Kristian E., Barnes, Christopher A., Schmidt, Tobias, Gessulat, Siegfried, Küster, Bernhard, Wilhelm, Mathias
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7096433/
https://www.ncbi.nlm.nih.gov/pubmed/32214105
http://dx.doi.org/10.1038/s41467-020-15346-1
Descripción
Sumario:Data-independent acquisition approaches typically rely on experiment-specific spectrum libraries, requiring offline fractionation and tens to hundreds of injections. We demonstrate a library generation workflow that leverages fragmentation and retention time prediction to build libraries containing every peptide in a proteome, and then refines those libraries with empirical data. Our method specifically enables rapid, experiment-specific library generation for non-model organisms, which we demonstrate using the malaria parasite Plasmodium falciparum, and non-canonical databases, which we show by detecting missense variants in HeLa.