Cargando…

High-level Fusion Coupled with Mahalanobis Distance Weighted (MDW) Method for Multivariate Calibration

Near infrared spectra (NIR) technology is a widespread detection method with high signal to noise ratio (SNR) while has poor modeling interpretation due to the overlapped features. Alternatively, mid-infrared spectra (MIR) technology demonstrates more chemical features and gives a better explanation...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Qianqian, Wu, Zhisheng, Lin, Ling, Zeng, Jingqi, Zhang, Jixiong, Yan, Hong, Min, Shungeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7096456/
https://www.ncbi.nlm.nih.gov/pubmed/32214179
http://dx.doi.org/10.1038/s41598-020-62396-y
Descripción
Sumario:Near infrared spectra (NIR) technology is a widespread detection method with high signal to noise ratio (SNR) while has poor modeling interpretation due to the overlapped features. Alternatively, mid-infrared spectra (MIR) technology demonstrates more chemical features and gives a better explanation of the model. Yet, it has the defects of low SNR. With the purpose of developing a model with plenty of characteristics as well as with higher SNR, NIR and MIR technologies are combined to perform high-level fusion strategy for quantitative analysis. A novel chemometrical method named as Mahalanobis distance weighted (MDW) is proposed to integrate NIR and MIR techniques comprehensively. Mahalanobis distance (MD) based on the principle of spectral similarity is obtained to calculate the weight of each sample. Specifically, the weight is assigned to the inverse ratio of the corresponding MD. Besides, the proposed MDW method is applied to NIR and MIR spectra of active ingredients in deltamethrin and emamectin benzoate formulations for quantitative analysis. As a consequence, the overall results show that the MDW method is promising with noticeable improvement of predictive performance than individual methods when executing high-level fusion for quantitative analysis.