Cargando…
Alzheimer’s disease, mild cognitive impairment, and normal aging distinguished by multi-modal parcellation and machine learning
A 360-area surface-based cortical parcellation is extended to study mild cognitive impairment (MCI) and Alzheimer’s disease (AD) from healthy control (HC) using the joint human connectome project multi-modal parcellation (JHCPMMP) proposed by us. We propose a novel classification method named as JMM...
Autores principales: | Sheng, Jinhua, Shao, Meiling, Zhang, Qiao, Zhou, Rougang, Wang, Luyun, Xin, Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7096533/ https://www.ncbi.nlm.nih.gov/pubmed/32214178 http://dx.doi.org/10.1038/s41598-020-62378-0 |
Ejemplares similares
-
Identifying and characterizing different stages toward Alzheimer's disease using ordered core features and machine learning
por: Sheng, Jinhua, et al.
Publicado: (2021) -
A multi-modal parcellation of human cerebral cortex
por: Glasser, Matthew F, et al.
Publicado: (2016) -
Increased Water Diffusion in the Parcellated Cortical Regions from the Patients with Amnestic Mild Cognitive Impairment and Alzheimer's Disease
por: Lin, Sung-Han, et al.
Publicado: (2017) -
Identifying Alzheimer’s disease and mild cognitive impairment with atlas-based multi-modal metrics
por: Long, Zhuqing, et al.
Publicado: (2023) -
Explainable Machine Learning with Pairwise Interactions for Predicting Conversion from Mild Cognitive Impairment to Alzheimer’s Disease Utilizing Multi-Modalities Data
por: Cai, Jiaxin, et al.
Publicado: (2023)