Cargando…
Gaussian Process Panel Modeling—Machine Learning Inspired Analysis of Longitudinal Panel Data
In this article, we extend the Bayesian nonparametric regression method Gaussian Process Regression to the analysis of longitudinal panel data. We call this new approach Gaussian Process Panel Modeling (GPPM). GPPM provides great flexibility because of the large number of models it can represent. It...
Autores principales: | Karch, Julian D., Brandmaier, Andreas M., Voelkle, Manuel C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7096578/ https://www.ncbi.nlm.nih.gov/pubmed/32265770 http://dx.doi.org/10.3389/fpsyg.2020.00351 |
Ejemplares similares
-
Score-Guided Structural Equation Model Trees
por: Arnold, Manuel, et al.
Publicado: (2021) -
From Data to Causes III: Bayesian Priors for General Cross-Lagged Panel Models (GCLM)
por: Zyphur, Michael J., et al.
Publicado: (2021) -
Fitting the Fractional Polynomial Model to Non-Gaussian Longitudinal Data
por: Ryoo, Ji Hoon, et al.
Publicado: (2017) -
Gaussian processes for machine learning
por: Rasmussen, Carl Edward, et al.
Publicado: (2006) -
Industry-HEP panel on Machine Learning
por: CERN. Geneva
Publicado: (2017)