Cargando…

Dataset on part replacement of dipalmitoylphophatidylcholine with locust bean on stimulated tracheobronchial fluid, in vitro bioaccessibility test and modeling of lung deposition of trace elements bound to airborne particulates

The data presented in this article are related to our work on development of tracheobronchial fluid, in vitro bioaccessibility test and modeling of lung deposition of trace elements bound to airborne particulates [1]. In this article, a neutral modeled tracheobronchial fluid was formulated by partia...

Descripción completa

Detalles Bibliográficos
Autores principales: Olumayede, Emmanuel Gbenga, Oguntimehin, Ilemobayo, Ojiodu, Chekwube C., Babalola, Bolanle M., Ojo, Ayomipo, Adeoye, Olagboye S., Sodipe, Olubunmi G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7096670/
https://www.ncbi.nlm.nih.gov/pubmed/32226806
http://dx.doi.org/10.1016/j.dib.2019.105010
Descripción
Sumario:The data presented in this article are related to our work on development of tracheobronchial fluid, in vitro bioaccessibility test and modeling of lung deposition of trace elements bound to airborne particulates [1]. In this article, a neutral modeled tracheobronchial fluid was formulated by partial replacement of some constituents in recipes of previously used lung epithelium fluids with local materials and was used in in vitro bioaccessibility extraction of elements-bound to airborne particulates. Dataset of particulate matters-bound trace elements collected in selected locations Ado – Ekiti is presented and the deposition of elements in different regions of respiratory tracts is estimated using Multiple-path particle deposition (MPPD) mathematic model. The data reveals that the formulated fluid has physical characteristics with superior properties to the existing fluids. The data also shows that bioaccessibility of elements were generally low (<30%) except for Cd and As with relatively moderate values (between 45 and 50%). Additionally, the lung deposition modeling shows that greater percentage of Cd (about 40% of inhaled dose) deposition in the lower alveolar part of the respiratory tract while tracheobronchial and extra-thoracic had 33% and 27% respectively. The data sets can be used as references to analyze data obtained using other formulation.