Cargando…

CD28-Dependent CTLA-4 Expression Fine-Tunes the Activation of Human Th17 Cells

Previous work has demonstrated that Th17 memory cells but not Th1 cells are resistant to CD28/CTLA-4 blockade with CTLA-4 Ig, leading us to investigate the individual roles of the CD28 and CTLA-4 cosignaling pathways on Th1 versus Th17 cells. We found that selective CD28 blockade with a domain antib...

Descripción completa

Detalles Bibliográficos
Autores principales: Krummey, Scott M., Hartigan, Christina R., Liu, Danya, Ford, Mandy L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7096747/
https://www.ncbi.nlm.nih.gov/pubmed/32203908
http://dx.doi.org/10.1016/j.isci.2020.100912
Descripción
Sumario:Previous work has demonstrated that Th17 memory cells but not Th1 cells are resistant to CD28/CTLA-4 blockade with CTLA-4 Ig, leading us to investigate the individual roles of the CD28 and CTLA-4 cosignaling pathways on Th1 versus Th17 cells. We found that selective CD28 blockade with a domain antibody (dAb) inhibited Th1 cells but surprisingly augmented Th17 responses. CD28 agonism resulted in a profound increase in CTLA-4 expression in Th17 cells as compared with Th1 cells. Consistent with these findings, inhibition of the CD28 signaling protein AKT revealed that CTLA-4 expression on Th17 cells was more significantly reduced by AKT inhibition relative to CTLA-4 expression on Th17 cells. Finally, we found that FOXO1 and FOXO3 overexpression restrained high expression of CTLA-4 on Th17 cells but not Th1 cells. This study demonstrates that the heterogeneity of the CD4(+) T cell compartment has implications for the immunomodulation of pathologic T cell responses.