Cargando…
Essential gene prediction in Drosophila melanogaster using machine learning approaches based on sequence and functional features
Genes are termed to be essential if their loss of function compromises viability or results in profound loss of fitness. On the genome scale, these genes can be determined experimentally employing RNAi or knockout screens, but this is very resource intensive. Computational methods for essential gene...
Autores principales: | Aromolaran, Olufemi, Beder, Thomas, Oswald, Marcus, Oyelade, Jelili, Adebiyi, Ezekiel, Koenig, Rainer |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7096750/ https://www.ncbi.nlm.nih.gov/pubmed/32257045 http://dx.doi.org/10.1016/j.csbj.2020.02.022 |
Ejemplares similares
-
Predicting host dependency factors of pathogens in Drosophila melanogaster using machine learning
por: Aromolaran, Olufemi, et al.
Publicado: (2021) -
Heuristic-enabled active machine learning: A case study of predicting essential developmental stage and immune response genes in Drosophila melanogaster
por: Aromolaran, Olufemi Tony, et al.
Publicado: (2023) -
Identifying essential genes across eukaryotes by machine learning
por: Beder, Thomas, et al.
Publicado: (2021) -
Clustering Algorithms: Their Application to Gene Expression Data
por: Oyelade, Jelili, et al.
Publicado: (2016) -
In Silico Knockout Screening of Plasmodium falciparum Reactions and Prediction of Novel Essential Reactions by Analysing the Metabolic Network
por: Oyelade, Jelili, et al.
Publicado: (2018)