Cargando…

Functionalized DNA-spider silk nanohydrogels for controlled protein binding and release

Hydrogels are excellent scaffolds to accommodate sensitive enzymes in a protective environment. However, the lack of suitable immobilization techniques on substrates and the lack of selectivity to anchor a biocatalyst are major drawbacks preventing the use of hydrogels in bioanalytical devices. Here...

Descripción completa

Detalles Bibliográficos
Autores principales: Humenik, Martin, Preiß, Tamara, Gödrich, Sebastian, Papastavrou, Georg, Scheibel, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7096766/
https://www.ncbi.nlm.nih.gov/pubmed/32259099
http://dx.doi.org/10.1016/j.mtbio.2020.100045
Descripción
Sumario:Hydrogels are excellent scaffolds to accommodate sensitive enzymes in a protective environment. However, the lack of suitable immobilization techniques on substrates and the lack of selectivity to anchor a biocatalyst are major drawbacks preventing the use of hydrogels in bioanalytical devices. Here, nanofilm coatings on surfaces were made of a recombinant spider silk protein (rssp) to induce rssp self-assembly and thus the formation of fibril-based nanohydrogels. To functionalize spider silk nanohydrogels for bioselective binding of proteins, two different antithrombin aptamers were chemically conjugated with the rssp, thereby integrating the target-binding function into the nanohydrogel network. Human thrombin was selected as a sensitive model target, in which the structural integrity determines its activity. The chosen aptamers, which bind various exosites of thrombin, enabled selective and cooperative embedding of the protein into the nanohydrogels. The change of the aptamer secondary structure using complementary DNA sequences led to the release of active thrombin and confirmed the addressable functionalization of spider silk nanohydrogels.