Cargando…

Detection of biological objects using dynamic characteristics of double-walled carbon nanotubes

This study explores double-walled carbon nanotubes as the sensing devices for biological objects including viruses and bacteria. The biological objects studied include alanine with amino terminal residue, deoxyadenosine with free residue, Coronaviridae and Bartonella bacilliformis. An expression has...

Descripción completa

Detalles Bibliográficos
Autores principales: Patel, Ajay M., Joshi, Anand Y.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7097327/
https://www.ncbi.nlm.nih.gov/pubmed/32226702
http://dx.doi.org/10.1007/s13204-014-0364-8
Descripción
Sumario:This study explores double-walled carbon nanotubes as the sensing devices for biological objects including viruses and bacteria. The biological objects studied include alanine with amino terminal residue, deoxyadenosine with free residue, Coronaviridae and Bartonella bacilliformis. An expression has been articulated to identify the mass of biological objects from the shift of frequency. Sensitivity of the sensor has been calculated when subjected to such biological objects. Molecular structural mechanics approach has been used for investigating the vibrational responses of zigzag and armchair double-walled carbon nanotube-based nano biosensors. The elastic properties of beam element are calculated by considering mechanical characteristics of covalent bonds between the carbon atoms in the hexagonal lattice. Spring elements are used to describe the interlayer interactions between the inner and outer tubes caused due to the van der Waals forces. The mass of each beam element is assumed as point mass at nodes coinciding with carbon atoms at inner and outer wall of DWCNT. Based on the sensitivity and the frequency shift it can be concluded that cantilever zigzag DWCNTs are better candidates for detecting the biological objects.