Cargando…
Quantitative Screening of Cervical Cancers for Low-Resource Settings: Pilot Study of Smartphone-Based Endoscopic Visual Inspection After Acetic Acid Using Machine Learning Techniques
BACKGROUND: Approximately 90% of global cervical cancer (CC) is mostly found in low- and middle-income countries. In most cases, CC can be detected early through routine screening programs, including a cytology-based test. However, it is logistically difficult to offer this program in low-resource s...
Autores principales: | Bae, Jung Kweon, Roh, Hyun-Jin, You, Joon S, Kim, Kyungbin, Ahn, Yujin, Askaruly, Sanzhar, Park, Kibeom, Yang, Hyunmo, Jang, Gil-Jin, Moon, Kyung Hyun, Jung, Woonggyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7097827/ https://www.ncbi.nlm.nih.gov/pubmed/32159521 http://dx.doi.org/10.2196/16467 |
Ejemplares similares
-
Deep Learning-Based Glaucoma Screening Using Regional RNFL Thickness in Fundus Photography
por: Yang, Hyunmo, et al.
Publicado: (2022) -
Encoder-Weighted W-Net for Unsupervised Segmentation of Cervix Region in Colposcopy Images
por: Park, Jinhee, et al.
Publicado: (2022) -
Smartphone-Based Endoscope System for Advanced Point-of-Care Diagnostics: Feasibility Study
por: Bae, Jung Kweon, et al.
Publicado: (2017) -
Deep-Learning-Based Algorithm for the Removal of Electromagnetic Interference Noise in Photoacoustic Endoscopic Image Processing
por: Gulenko, Oleksandra, et al.
Publicado: (2022) -
Development of Real-Time Dual-Display Handheld and Bench-Top Hybrid-Mode SD-OCTs
por: Cho, Nam Hyun, et al.
Publicado: (2014)