Cargando…
Construction of a Stapled α-Helix Peptide Library Displayed on Phage for the Screening of Galectin-3-Binding Peptide Ligands
[Image: see text] A stapled α-helix peptide library was designed and constructed using a chemically modified phage display system for screening stapled-peptide ligands against target proteins. The α-helix peptide library, with two cysteine residues on the opposite side of the randomized face, was mo...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7097893/ https://www.ncbi.nlm.nih.gov/pubmed/32226843 http://dx.doi.org/10.1021/acsomega.9b03461 |
Sumario: | [Image: see text] A stapled α-helix peptide library was designed and constructed using a chemically modified phage display system for screening stapled-peptide ligands against target proteins. The α-helix peptide library, with two cysteine residues on the opposite side of the randomized face, was modified with a rigid hydrocarbon staple linker on a phage. The stapled α-helix peptide phage library was screened against galectin-3 (Gal-3), a cancer-related galactose-binding protein. The obtained stapled peptides showed a high binding affinity (K(d) = 0.45 μM) despite being nonsugar ligands. The stapled modification played important roles in stabilizing the α-helical structure that contributed to the high binding affinity to Gal-3. In addition, the best stapled peptide ligands showed specific binding to Gal-3 among various carbohydrate-binding proteins. Thus, the designed α-helix peptide phage library with a constrained structure by the staple linker will advance the discovery of peptide ligands with improved specificity and affinity. |
---|