Cargando…

Multistimuli-Responsive Fluorescent Organogelator Based on Triphenylamine-Substituted Acylhydrazone Derivative

[Image: see text] A new triphenylamine-based acylhydrazone derivative (TPAH-B8) was synthesized. TPAH-B8 could form organogels in cyclohexane through ultrasonic treatment. A typical gelation-induced fluorescence enhancement property was observed, which was attributed to the formation of J-aggregate...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Tianren, Chen, Fangyi, Zhang, Chunxue, Che, Xiangyang, Li, Wei, Bai, Binglian, Wang, Haitao, Li, Min
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7097906/
https://www.ncbi.nlm.nih.gov/pubmed/32226844
http://dx.doi.org/10.1021/acsomega.9b03534
Descripción
Sumario:[Image: see text] A new triphenylamine-based acylhydrazone derivative (TPAH-B8) was synthesized. TPAH-B8 could form organogels in cyclohexane through ultrasonic treatment. A typical gelation-induced fluorescence enhancement property was observed, which was attributed to the formation of J-aggregate in the gel state. More interestingly, TPAH-B8 exhibited multistimuli responsive behaviors. First, TPAH-B8 showed a solvatochromic effect, with the emission color changing from blue to cyan with the change in solvent from nonpolar cyclohexane to polar dimethyl sulfoxide (DMSO). Second, TPAH-B8 showed a reversible mechanofluorochromism. The xerogel of TPAH-B8 emitted a blue fluorescence, while the fluorescence color changed to cyan after grinding. The cyan and blue colors could be repeated with the treatment of grinding and annealing, which was explored and ascribed to the transformation between crystalline and amorphous states. Third, TPAH-B8 revealed acidochromic property. The fluorescence color of TPAH-B8 in organogel and solid states could be switched by trifluoroacetic acid (TFA)/triethylamine (TEA). This work not only demonstrated the multistimuli-responsive fluorescent properties of TPAH-B8 but also offered an easy way to develop new kinds of multistimuli-responsive fluorescent materials.