Cargando…
Low-Temperature (<40 °C) Atmospheric-Pressure Dielectric-Barrier-Discharge-Jet Treatment on Nickel Oxide for p–i–n Structure Perovskite Solar Cells
[Image: see text] A scan-mode low-temperature (<40 °C) atmospheric-pressure helium (He) dielectric-barrier discharge jet (DBDjet) is applied to treat nickel oxide (NiO) thin films for p–i–n perovskite solar cells (PSCs). Reactive plasma species help reduce the trap density, improve the transmitta...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7097993/ https://www.ncbi.nlm.nih.gov/pubmed/32226891 http://dx.doi.org/10.1021/acsomega.0c00067 |
_version_ | 1783511094954819584 |
---|---|
author | Tsai, Jui-Hsuan Cheng, I-Chun Hsu, Cheng-Che Chen, Jian-Zhang |
author_facet | Tsai, Jui-Hsuan Cheng, I-Chun Hsu, Cheng-Che Chen, Jian-Zhang |
author_sort | Tsai, Jui-Hsuan |
collection | PubMed |
description | [Image: see text] A scan-mode low-temperature (<40 °C) atmospheric-pressure helium (He) dielectric-barrier discharge jet (DBDjet) is applied to treat nickel oxide (NiO) thin films for p–i–n perovskite solar cells (PSCs). Reactive plasma species help reduce the trap density, improve the transmittance and wettability, and deepen the valence band maximum (VBM) level. A NiO surface with the lower trap density surface of NiO allows better interfacial contact with the MAPbI(3) layer and increases the carrier extraction capability. MAPbI(3) can better crystallize on a more hydrophilic NiO surface, thereby suppressing charge recombination from the grain boundary and the interface. Further, the deeper VBM allows better band alignment and reduces the probability of nonradiative recombination. NiO treatment using He DBDjet with a scan rate of 0.3 cm/s can improve PSC efficiency from 13.63 to 14.88%. |
format | Online Article Text |
id | pubmed-7097993 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-70979932020-03-27 Low-Temperature (<40 °C) Atmospheric-Pressure Dielectric-Barrier-Discharge-Jet Treatment on Nickel Oxide for p–i–n Structure Perovskite Solar Cells Tsai, Jui-Hsuan Cheng, I-Chun Hsu, Cheng-Che Chen, Jian-Zhang ACS Omega [Image: see text] A scan-mode low-temperature (<40 °C) atmospheric-pressure helium (He) dielectric-barrier discharge jet (DBDjet) is applied to treat nickel oxide (NiO) thin films for p–i–n perovskite solar cells (PSCs). Reactive plasma species help reduce the trap density, improve the transmittance and wettability, and deepen the valence band maximum (VBM) level. A NiO surface with the lower trap density surface of NiO allows better interfacial contact with the MAPbI(3) layer and increases the carrier extraction capability. MAPbI(3) can better crystallize on a more hydrophilic NiO surface, thereby suppressing charge recombination from the grain boundary and the interface. Further, the deeper VBM allows better band alignment and reduces the probability of nonradiative recombination. NiO treatment using He DBDjet with a scan rate of 0.3 cm/s can improve PSC efficiency from 13.63 to 14.88%. American Chemical Society 2020-03-10 /pmc/articles/PMC7097993/ /pubmed/32226891 http://dx.doi.org/10.1021/acsomega.0c00067 Text en Copyright © 2020 American Chemical Society This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License (http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html) , which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes. |
spellingShingle | Tsai, Jui-Hsuan Cheng, I-Chun Hsu, Cheng-Che Chen, Jian-Zhang Low-Temperature (<40 °C) Atmospheric-Pressure Dielectric-Barrier-Discharge-Jet Treatment on Nickel Oxide for p–i–n Structure Perovskite Solar Cells |
title | Low-Temperature (<40 °C) Atmospheric-Pressure
Dielectric-Barrier-Discharge-Jet Treatment on Nickel Oxide for p–i–n
Structure Perovskite Solar Cells |
title_full | Low-Temperature (<40 °C) Atmospheric-Pressure
Dielectric-Barrier-Discharge-Jet Treatment on Nickel Oxide for p–i–n
Structure Perovskite Solar Cells |
title_fullStr | Low-Temperature (<40 °C) Atmospheric-Pressure
Dielectric-Barrier-Discharge-Jet Treatment on Nickel Oxide for p–i–n
Structure Perovskite Solar Cells |
title_full_unstemmed | Low-Temperature (<40 °C) Atmospheric-Pressure
Dielectric-Barrier-Discharge-Jet Treatment on Nickel Oxide for p–i–n
Structure Perovskite Solar Cells |
title_short | Low-Temperature (<40 °C) Atmospheric-Pressure
Dielectric-Barrier-Discharge-Jet Treatment on Nickel Oxide for p–i–n
Structure Perovskite Solar Cells |
title_sort | low-temperature (<40 °c) atmospheric-pressure
dielectric-barrier-discharge-jet treatment on nickel oxide for p–i–n
structure perovskite solar cells |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7097993/ https://www.ncbi.nlm.nih.gov/pubmed/32226891 http://dx.doi.org/10.1021/acsomega.0c00067 |
work_keys_str_mv | AT tsaijuihsuan lowtemperature40catmosphericpressuredielectricbarrierdischargejettreatmentonnickeloxideforpinstructureperovskitesolarcells AT chengichun lowtemperature40catmosphericpressuredielectricbarrierdischargejettreatmentonnickeloxideforpinstructureperovskitesolarcells AT hsuchengche lowtemperature40catmosphericpressuredielectricbarrierdischargejettreatmentonnickeloxideforpinstructureperovskitesolarcells AT chenjianzhang lowtemperature40catmosphericpressuredielectricbarrierdischargejettreatmentonnickeloxideforpinstructureperovskitesolarcells |