Cargando…
DeepMILO: a deep learning approach to predict the impact of non-coding sequence variants on 3D chromatin structure
Non-coding variants have been shown to be related to disease by alteration of 3D genome structures. We propose a deep learning method, DeepMILO, to predict the effects of variants on CTCF/cohesin-mediated insulator loops. Application of DeepMILO on variants from whole-genome sequences of 1834 patien...
Autores principales: | Trieu, Tuan, Martinez-Fundichely, Alexander, Khurana, Ekta |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7098089/ https://www.ncbi.nlm.nih.gov/pubmed/32216817 http://dx.doi.org/10.1186/s13059-020-01987-4 |
Ejemplares similares
-
MILO Mobile: An iPad App to Measure Search Performance in
Multi-Target Sequences
por: Thornton, Ian M., et al.
Publicado: (2020) -
DeepTACT: predicting 3D chromatin contacts via bootstrapping deep learning
por: Li, Wenran, et al.
Publicado: (2019) -
High-throughput deep learning variant effect prediction with Sequence UNET
por: Dunham, Alistair S., et al.
Publicado: (2023) -
Polishing copy number variant calls on exome sequencing data via deep learning
por: Özden, Furkan, et al.
Publicado: (2022) -
CNCDatabase: a database of non-coding cancer drivers
por: Liu, Eric Minwei, et al.
Publicado: (2020)