Cargando…
Reduced bacterial contamination rates detected on silicone tourniquets compared to conventional tourniquets in clinical routine
BACKGROUND: Tourniquets used for peripheral venous vascular access such as blood sampling are regularly contaminated in clinical routine. Although most contaminations are harmless, some pose a possible risk for infection. To improve peripheral venous access infection control standards, tourniquets w...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7098146/ https://www.ncbi.nlm.nih.gov/pubmed/32216761 http://dx.doi.org/10.1186/s12879-020-04975-y |
Sumario: | BACKGROUND: Tourniquets used for peripheral venous vascular access such as blood sampling are regularly contaminated in clinical routine. Although most contaminations are harmless, some pose a possible risk for infection. To improve peripheral venous access infection control standards, tourniquets with no or as few as possible bacterial burden should be used. Conventional tourniquets can be reprocessed by autoclaving or by incubating in disinfectants. However, both methods are time-consuming and not suitable for immediate use between patients. In contrast, silicone tourniquets can be quickly and simply reprocessed with wipe disinfection. In vitro studies from the manufacturer have demonstrated reduced bacterial contamination on silicone tourniquets after usage compared to conventional tourniquets. This study aims to independently investigate the bacterial load on both types of tourniquets in clinical routine. METHODS: In a first trial, new conventional and silicon tourniquets were used for blood sampling in one facility with strict guidelines for reprocessing (after each patient or not at all) for 1 day and tested for bacterial contamination. In a second trial, new tourniquets were used in four facilities while the mode and frequency of tourniquets’ reprocessing was defined individually by each facility. The number of treated patients, mode and frequency of reprocessing and other relevant handling measures were documented. RESULTS: Under controlled conditions, with strictly specified reprocessing, slightly fewer bacteria were found on silicone than on conventional tourniquets. In routine clinical practice the reprocessing frequency was not higher for silicone tourniquets in practice. Yet, in all four facilities, there were significantly fewer bacteria found on silicone than on conventional tourniquets. CONCLUSION: Although tourniquets are classified as non-critical medical devices, results show – together with benefits of faster and easier reprocessing – that silicone tourniquets can improve infection control of venous vascular access. |
---|