Cargando…
A Machine Learning–Based Model to Predict Acute Traumatic Coagulopathy in Trauma Patients Upon Emergency Hospitalization
Acute traumatic coagulopathy (ATC) is an extremely common but silent murderer; this condition presents early after trauma and impacts approximately 30% of severely injured patients who are admitted to emergency departments (EDs). Given that conventional coagulation indicators usually require more th...
Autores principales: | Li, Kaiyuan, Wu, Huitao, Pan, Fei, Chen, Li, Feng, Cong, Liu, Yihao, Hui, Hui, Cai, Xiaoyu, Che, Hebin, Ma, Yulong, Li, Tanshi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7098202/ https://www.ncbi.nlm.nih.gov/pubmed/31908189 http://dx.doi.org/10.1177/1076029619897827 |
Ejemplares similares
-
Acute traumatic coagulopathy and trauma-induced coagulopathy: an overview
por: Kushimoto, Shigeki, et al.
Publicado: (2017) -
Acute Traumatic Coagulopathy: The Value of Histone in Pediatric Trauma Patients
por: Ulusoy, Emel, et al.
Publicado: (2018) -
Development and Validation of a Dynamic Prediction Model for Massive Hemorrhage in Trauma
por: Guo, Chengyu, et al.
Publicado: (2022) -
A prediction model for massive hemorrhage in trauma: a retrospective observational study
por: Guo, Chengyu, et al.
Publicado: (2022) -
A Machine Learning Approach for the Prediction of Traumatic Brain Injury Induced Coagulopathy
por: Yang, Fan, et al.
Publicado: (2021)