Cargando…

Modular and regioselective synthesis of all-carbon tetrasubstituted olefins enabled by an alkenyl Catellani reaction

All-carbon tetrasubstituted olefins have been found in numerous biologically important compounds and organic materials. However, regio- and stereocontrolled construction of this structural motif still constitutes a significant synthetic challenge. Here, we show that a modular and regioselective synt...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Jianchun, Dong, Zhe, Yang, Cheng, Dong, Guangbin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7098644/
https://www.ncbi.nlm.nih.gov/pubmed/31740759
http://dx.doi.org/10.1038/s41557-019-0358-y
Descripción
Sumario:All-carbon tetrasubstituted olefins have been found in numerous biologically important compounds and organic materials. However, regio- and stereocontrolled construction of this structural motif still constitutes a significant synthetic challenge. Here, we show that a modular and regioselective synthesis of all-carbon tetrasubstituted olefins can be realized via alkenyl halide- or triflate-mediated palladium/norbornene (Pd/NBE) catalysis, which is enabled by a modified NBE containing a C2 amide moiety. This new NBE co-catalyst effectively suppressed undesired cyclopropanation pathways, which have previously been a main obstacle for developing such reactions. Diverse cyclic and acyclic alkenyl bromides or triflates with a wide range of functional groups can be employed as substrates. Various substituents can be introduced at the alkene C1 and C2 positions regioselectively simply by changing the coupling partners. Initial mechanistic studies provide insights on the rate-limiting step as well as the structure of the actual active ligand in this system.