Cargando…
Clinical, Conventional CT and Radiomic Feature-Based Machine Learning Models for Predicting ALK Rearrangement Status in Lung Adenocarcinoma Patients
Objectives: To predict the anaplastic lymphoma kinase (ALK) mutations in lung adenocarcinoma patients non-invasively with machine learning models that combine clinical, conventional CT and radiomic features. Methods: This retrospective study included 335 lung adenocarcinoma patients who were randoml...
Autores principales: | Song, Lan, Zhu, Zhenchen, Mao, Li, Li, Xiuli, Han, Wei, Du, Huayang, Wu, Huanwen, Song, Wei, Jin, Zhengyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7099003/ https://www.ncbi.nlm.nih.gov/pubmed/32266148 http://dx.doi.org/10.3389/fonc.2020.00369 |
Ejemplares similares
-
A Machine Learning Model Based on PET/CT Radiomics and Clinical Characteristics Predicts ALK Rearrangement Status in Lung Adenocarcinoma
por: Chang, Cheng, et al.
Publicado: (2021) -
A pre-treatment CT-based weighted radiomic approach combined with clinical characteristics to predict durable clinical benefits of immunotherapy in advanced lung cancer
por: Zhu, Zhenchen, et al.
Publicado: (2022) -
Pretreatment Thoracic CT Radiomic Features to Predict Brain Metastases in Patients With ALK-Rearranged Non-Small Cell Lung Cancer
por: Wang, Hua, et al.
Publicado: (2022) -
CT features and disease spread patterns in ROS1-rearranged lung adenocarcinomas: comparison with those of EGFR-mutant or ALK-rearranged lung adenocarcinomas
por: Woo, Jung Han, et al.
Publicado: (2020) -
Clinical outcomes in ALK-rearranged lung adenocarcinomas according to ALK fusion variants
por: Cha, Yoon Jin, et al.
Publicado: (2016)