Cargando…
Processing citizen science- and machine-annotated time-lapse imagery for biologically meaningful metrics
Time-lapse cameras facilitate remote and high-resolution monitoring of wild animal and plant communities, but the image data produced require further processing to be useful. Here we publish pipelines to process raw time-lapse imagery, resulting in count data (number of penguins per image) and ‘near...
Autores principales: | Jones, Fiona M., Arteta, Carlos, Zisserman, Andrew, Lempitsky, Victor, Lintott, Chris J., Hart, Tom |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7099010/ https://www.ncbi.nlm.nih.gov/pubmed/32218449 http://dx.doi.org/10.1038/s41597-020-0442-6 |
Ejemplares similares
-
Time-lapse imagery and volunteer classifications from the Zooniverse Penguin Watch project
por: Jones, Fiona M., et al.
Publicado: (2018) -
Author Correction: Time-lapse imagery and volunteer classifications from the Zooniverse Penguin Watch project
por: Jones, Fiona M., et al.
Publicado: (2019) -
Crowdsourced MRI quality metrics and expert quality annotations for training of humans and machines
por: Esteban, Oscar, et al.
Publicado: (2019) -
Phase contrast time-lapse microscopy datasets with automated and manual cell tracking annotations
por: Ker, Dai Fei Elmer, et al.
Publicado: (2018) -
ALFI: Cell cycle phenotype annotations of label-free time-lapse imaging data from cultured human cells
por: Antonelli, Laura, et al.
Publicado: (2023)