Cargando…
Machine learning prediction of incidence of Alzheimer’s disease using large-scale administrative health data
Nationwide population-based cohort provides a new opportunity to build an automated risk prediction model based on individuals’ history of health and healthcare beyond existing risk prediction models. We tested the possibility of machine learning models to predict future incidence of Alzheimer’s dis...
Autores principales: | Park, Ji Hwan, Cho, Han Eol, Kim, Jong Hun, Wall, Melanie M., Stern, Yaakov, Lim, Hyunsun, Yoo, Shinjae, Kim, Hyoung Seop, Cha, Jiook |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7099065/ https://www.ncbi.nlm.nih.gov/pubmed/32258428 http://dx.doi.org/10.1038/s41746-020-0256-0 |
Ejemplares similares
-
Diagnosis and prognosis of Alzheimer's disease using brain morphometry and white matter connectomes
por: Wang, Yun, et al.
Publicado: (2019) -
Overestimated prediction using polygenic prediction derived from summary statistics
por: Park, David Keetae, et al.
Publicado: (2023) -
Incidence and Reappraisal of Known Risk Factors Associated with Carpal Tunnel Syndrome: A Nationwide, 11-Year, Population-Based Study in South Korea
por: Rhee, Seung Yeon, et al.
Publicado: (2021) -
Gene-Based Rare Allele Analysis Identified a Risk Gene of Alzheimer’s Disease
por: Kim, Jong Hun, et al.
Publicado: (2014) -
Cerebrospinal Biomarker Cut-off Methods Defined Only by Alzheimer's Disease Predict More Precisely Conversions of Mild Cognitive Impairment
por: Kim, Jong Hun, et al.
Publicado: (2017)